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PREFACE

Analytic Geometry, as a college course in mathematics, has been '\<\
materially changed during the last twenty-five years. Many of tg(b
things that were formerly included have been camied Forward_@

the preceding subjects, college algebra and trigonometry. ents
now enter a formal course in analytic geometry with a urider-
standing of rectangular co-ordinates and of the graph elemen-
tary algebraic and transcendental functions. \\

The present volume is the cutcome of a seriout\@'empt to meet the
current demand for a brief text that is adap m: the changed condi-
tions and at the same time is sufficien &ompiete, adequate for
the curricular needs of the student, a bove all a teachable text.
In pursuing our aims we have trie make use of the information
the student already possesses andhave felt compelled to omit some
topics, interesting in thems » and yet of only secondary impor-
tance in so far as futur s are concerned.

In a text for a coursés well standardized as analytic geometry, it
would be too m o expect any startlingly new material. Pethaps
the nearest ap h to this would be the chapter on empirical equa-
tions, whi K:)vas included with the idea of making the subject
matter re value to future scientists who otherwise would gen-
eral e no oppertunity to become acquainted with this impor-
@ bject in the ordinary undergraduate curriculum.

One point of interest is the more than average use of graphic
methods as a labor-saving device.

The exercises of the text afford ample opportunity for drill, while
reviews are inserted in places where it was felt they would be most
effective. As a general policy answers are given for the odd-
numbered exercises and to some others that may offer particulsr
difficulty or interest.
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The summaries of formulas are presented in the hope that they will
make the book more useful for reference purposes.

For the benefit of those instructors who may prefer a slightly altered
sequence of topics, Chapter IX, on general methods of curve tracing,
was written independently of the discussion of conics so that it may
precede Chapter lll without confusion.

We hope we have succeeded in producing a book that is readab
and intellectually stimulating, one that will make a real con i)A
tion toward more effective teaching of and a greater intgfeed) in

mathematics, 0

We wish to express our thanks to Professor E. ﬂilh for his
Lindly criticism and helpful suggestions for the vement of the
work, to Professor W. L. Porter of The Agric Qand Mechanical
College of Texas, whose criticism has aid in strengthening the
treatment, and to The Dryden Pres dse co-operation makes
possible the appearance of the bo its present form. We also
acknowledge with thanks the suzﬁtions of Professor H. A. Fisher
of the North Carolina State ege, Professor J. H. Bushey of
Hunter Coliege, New Yorle¥Professor H. E. Stelson of Kent State
University, and Profes aniel E. Whittord of the Polytechnic
Institute of Brooklylb tead the proolks of this work.

\
K Harvey P. Pettit
b@ P. Luteyn
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CBAPTER

FORMULAS FOR REFERENCE
&

&
0&
\“%

In the study of analytic geometry, there will beN uent occa-
sions when it will be necessary to recall cert ’s) 1eorems, for-

mulas, and processes developed in earlier co 1§ in mathematics.
We give in the next few pages a brief su ‘é{ of the most esscn-

tial of this information. @
ALG \Eggﬁa
1  The roots of the quadrz;t&z quat-ion
br+¢=
are
wb %_' 4a,c —b— Vb~ dac dac
T = Yo=— o "

2a

@% are real and unequal if 5 — dac > 0.
\&éroots are real and equal if b — dae = 0.
e roots are imaginary i b? — dae < 0.
0 Simultaneous solution of two equations of the first degree
Az + By+C =0,
D4 Ey+ F=10.
-CB A ~C
- E D —F

T Ty ar
DE DE

1



2 ” FORMULAS FOR REFERENCE

Bcl, AC \A B
iy l=lpp ~Ipr DE
where E I;, is upderstood to mean A K — BD and not zero.

Eg, 3x—2y+3= 0,
24+ 4y — 14 = 0,

:z::y:l=~ 1_14\;_!3 14" \; 3-16:48:.1&,\

or 2z:y:1=1:3:1 Hence =1 y=3. &Q’

give

| O
3 Determinant of the third order “3’
>
‘A B C| A\
|D E F‘ is understood te mean \\\Q}
G H K|

AEK — AFH — BDg@'BFG + CDH — CEG,
which can be expressed madilé.‘

A

Notice that e l@econd -order determinant in this expan-

+C

om

sion is fou 1‘0pp1ng the row and eolumn of the element
by whichyi ¢ muluphcd and that these clements are taken,
in tur i the same row or column and are preceded al-

by the plus and minus signs.

\@i%s,

O 359
QA 517 \1 7 \2 7\ ‘2 |
| =3 -5 4+ ¢
00 ',128| 28 18 12
=3(8-14) - 5(16 - 7)+- 9(4 - 1)
= —18 — 45+ 27 = — 36.
Apgain :
5 -3 -2 :
I 21
1 2 1=5 \ 1 3‘ ‘ | 12
—2 1 4 =8 _g 4| ¢ 2)!_2 ]

=58 -1 +3(4+2)-2(1+4)
=354 18 — 10 = 43,



FORMULAS FOR REFERENCE 3

GEOMETRY

1 The ares of a triangle is one-half the product of the base and

altitude.

. Q

9 The area of a trapezoid is one-half the product of the sum of ’\
the bases and the altitude. &Q
3  Pythagorean theorem: The square on the hypote ne%‘of a

right triangle is equal to the sum of the squares @hﬁ legs.

4  The locus of points equidistant from two Ey oints is the
perpendicular bisector of the line segm{ joining them.

5  The loeus of points equidistant fr Qm intersecting lines
is the bisectors of the angles b@mn the lines,

6  Thelocus of points in a pl ~§nd at a fixed distance from a
given point of the p]am\is a circle with the point as center
and the fixed distans radius.

S
7  The volume o %rism is the preduct of the altitude and a
right cros 1.

8 The\z&\e of 3 truncated prism is the area of & right cross
se% multiplicd by the sum of the parallel edges and
@ ed by the number of parallel edges.

The volume of a pyramid is one-third the produet of the
altitude and the area of the base.



FORMULAS FOR REFERENCE

TRIGONOMETRY

1 Values of functions of certain convenient angles

! 1
!

Angle | 0 /8 = 80°x/4 = 45°7/3 = 60°|r/2 = 90°] m= 180°31r/2 270°
Sine 0 Yo 1 Bv2 ] K3 1 ‘ 0 -1
Cosine | 1] J5+/§ | 24+/2 Y4 0 —~1 0
Tangent! 0 | l4+/3 1 /3 o 0 0 . \{\
2 Fundamental identities 0&

1
esef=—rs8ecf=—scotf= — ta
81N ¢

1 1 ggﬁp
08 6 ° tan ¢ n& 05 j
sin? ¢+ cos? § = 1,
sec® § = 14 tan? 4,
cactd =14 cot? 4,

3 Other formulas

sin(r/3—8) = cos 6, cos(:r/2

=sgin 8, tan(r/2—4) = cot 4,

sin(x — 8) = 5in 6, cos(x g}— —e08 8, tan{mr — 8) = —tan 6,

sin(r + #) = —sin 4, ¢

sin(—#) = — gin !9 (~6) = cos 9, tan(—6) =
cos(f — ) = ¢ os fi2 4 sin 8; sin 6,
8 —
ta.n{81 - 62 ! fan 82
+ tan 81 tan 82
sin 24 n § cos 4,
co cos*ﬂ—sin'~'8=2c0529—1=1-2sin’9,
@ % 2tan 8
1 — tan?g

lhcosﬁ [/} 1/1+cosﬁ
0 sm( ) 1/ B— cos(ﬁ) = + S,

2

a.n(g) sin 8 1 — cos ﬁ.
2 I+cosg gin &

. 4 Areaof triangle ABC = 14gb sin O,

3 TLawof Cosines: g2 = p2.4 ¢ 2bc cos A,

= —cos ¢, tan{r + 8) = tan 4,
— tan 4,



CHAPTER

POINTS &
O
&
(2;\“3:
.~(§
N
@
oY
&
N\

&
&
Q
%}K

.1 CO-OR TE SYSTEMS

The study nalytic geometry is the application of algebra fo
geomet which we attack the twofold problem of finding an
algeb representation of geometric properties of figures and of
the geometric interpretation of certain algebraic forms
operations. The first problem is to set up a correspondence
between sets of numbers and points, in other words, to establish
systems of co-ordinates. There are many such systems of co-
ordinates, but we shall limit our consideration to the two most
commonly used in elementary mathematics, rectangular co-ordi-
nates and polar co-ordinates.
5
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.2 RECTANGULAR CO-ORDINATES

In our study of algebra and trigonometry, we have become
familiar with the rectangular co-ordinate system, in which the’

y axis

X = ABSCISSA 0.}

{-4,1.8)

¥ = QRDINATE

«\
ORIGIN N

% oxis Q,
{-5,~-2.5) (3,-3) ﬂ“%

FIG. 1.-RECTANGULAR CO- ATES,

z- and y-axes are at right angles to \1>0thcr (Fig. 1). Corre-
sponding to each point in the pl ei?&z're is a pair of numbers
{z,y), called respectively the a@ and the ordinate of the
point. These are the directed 8isfances from the z- and 1/-axXESs,
respectively. The z-measuxn ts start from the y-axis, positive
to the right, negative to left. The y-measurements start from
the r-axis, positive y{ egative down. The intersection of the

axes is called th . The axes divide the plane into four
gquadrants, n d as shown in Fig, 2.

The ordin@nf every point of the z-axis is zero, the abscisss
of everé int on the y-axis 18 zero, and the eo-ordinates of the

o°

oo

n w

FIG. 2—THE OUADRANTS.

origin are both zero, Each
& single point; and to eve
pair of values, (z,y).

pair of values, (x y) corresponds tU
ry point there corresponds a unique
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3.

6.

~ EXERCISES
What are the algebraic signg of 2 and y in the various quadrants?
Locate the following points:
(2,4, (3,2}, (—5,3), (—3,—-2), (~14,8), (1.6,—2.8), (4,28, {—524,0).
Read the co-ordinates of the indicated points of Fig. 3 with respect to
the given axes.

|
b
: S
; &
] .%’
\
0 ; { 52
i NN
L N
el
F N
k Ni
L. & ’
R

Qd,

Bhow how the rect&%ﬁ;‘ 4r co-ordinate system could be applied to
house numbering M a dity. Is the system in use in any ity with which
you are familiar?

How iz a poi gfthe surface of the earth loeated? Doos the system of
reference 1 semble the rectangular co-ordinate system? In what

way doe iffer? .
How % vou describe the location of the eapital city of your state,
wit: rence to the state map?

Q%LAR CO-ORDINATES

the polar co-ordinate system, points are located by giving

the distance and direction from a fixed point, called the pole.

In order to determine the direction of the point from the pole
we need a fixed line of divection, known as the polar axis. We
take a line segment whose length is equal to the distance of the
point from the pole, and imagine this seginent, with one end
fixed at the pole, turning through a definite angle from the
polar axis, counterclockwise for a positive angle, clockwise for a.

§\.
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on the polar axis. If, for the same value

8 POINTS

negative angle, until the other end - coincides with the given
point. The angle gencrated in this manner is called the vectorial
angle, and the line segment from the pole to the given point 18
the radius vector. -

Pi{m&}

‘ )

0 B B

POLE POLAR AXIS (QI ’
0‘3

FIG. 4—POLAR CO-ORDINATES.

In Fig. 4, ) is the pole, 0A the polar axis, OF tl "E)iius vector
which we think of as having turned through th{ gitive angle @
from the position OB. The direction 04 § ‘@midered positive

@ the radius vector
were negative, the point would lie he line OP extended
through and beyond (3, as shown&®1 r. 5,

@ > Ples)

-6
\0 FIG. 5—POLAR CO-ORDINATES.
as in rectangular co-ordinates, corresponding to each pair
f co-ordinates (p,8), there is a single point. The converse state-
ment is not true, since the addition or subtraction of any mul-
tiple of 360° gives a new vectorial angle for the same point.
Thlus (0,8}, (0,60 + 360°), (o0 — 720°) all correspond to the same
point. Similarly, changing the vectorial angle by 180° and, at
the same time changing the sign of the radius vector gives new
polar co-ordinates for the same point. Thus (5.8}, (—p,8 4+ 180°),
{—p,8 — 180°) Tepresent the same point. ,

EXAMPLE. Locate the points 2.30%), (—3.45° a o
in Fig, 6, points (2,307), (—3,45%), (3,226%), (2,—90°),
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(2,-90°)

“(3,225% A()&
FIG. 6 —POLAR CO-ORDINATES.\\

EXERCISES (&0

1. locate the following points: i

(a) {1,15%, (~-2,—150%, (—6,7/6), (8,— 1,—=/2). {Remember

that a radian is the eentral angle wl intercepted arc is equal
to the radius. Thus 1 radian = § [approx.], and 180° =«

radians.}
(0) (4,—30), (~5,0), (9,7), a—?;éﬁgh), (—4,2257).
(C} (_6;0): (11_1200); (_6l]200 337":’"'4): (l,'.rr)‘
2. Read the polar co-ordinates of Whe indicated points in Tig. 7. The
angular divisions marked a& 157 intervals.

()

FIG. 7—POLAR CO-ORDINATES.
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3. Loeate the following points: . )
ey s ey ™
(\/5: 300)) (2\/§s_-g_): (—é\/lo,'}a’.‘)’ (_'\/21:_6);

{+/18,2x). .
4, (&) By means of the Pythagercan theorem construet, with a selected
unit, the following square roots:

V2, V3 VE VB VI VE V0, VL VI, VEL VD,

414, B
(Observe that 2 = 19 + 1% 8 = 28 — 13, 6 = 22 5 (v/2)%, ete) | <\
{b) Plot the following points in reetangular co-ordinates: ’\
1-vD, -2V, (3vB0), ©0-VID, &%)
1 2 e ,

5. Find the reetangular and the polsr eo-ordinates o@vcrtices of &
' 1

square with diagonal of 8 units, if the sides % raliet to the co-
ordinate axes and the center of the square is w & Tigin.

6. Find the rectungular and the polar co-ordi of the vertices of a
square whose sides are parallel to the co- ate axcs, if the origin
lies at one vertex of the square. (4 cases,

1.4 RELATION BETWEEN REC GULAR AND POLAR
CO-ORDINATES .

Since, as we have said, to point in the plane there corre-
sponds a pair of co-ordinat®s(x,y) and a pair (p,d}, we very nat-
urally look for a rclatighship between the two systems. Let the
polar axis of the p({ﬁ;tem coineide with the positive z-axis,

éQ) .y} _(26)

X X

FIG. 8—CHANGE OF CO-ORDINATES.

ar.lcl the pole coincide with the origin. We can then read
directly, as we see from Tig. 8,

1 E=pceosh, y=psing,
oty = o %=ta116.

The student should show that these relations held for {(p,d) in
each of the four quadrants. '
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EXAMPLE 1. Write the polar co-ordinates of the point {4,4).

4

w R

2+

h

4
1 = tan 45°, thercfore 8 = 45°;

= 16+ 16 = 32 — 22, therefore p = 4/2.

4,4)

&’

X {é‘\

©

o
FIG., 9—EXAMPLE 1.
4

Thug the polnt is, in polar co-ordinates, (4 Vv 6\@)—

EXAMPLE 2.

Write the rectangular

z=06c¢ Q

%@sin g = 3+/3,

O
@ |

w4

(6,5

FIG. 10—EXAMPLE 2.

Henee the point (¥ig. 10) is (3, 3+/3).

@étes of the point (8, 7/3).
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EXERCISES
1. Change the following co-ordinates of a set of points from rectangular
to polar notation and plot the peints:

(2,2), (5,2), 4,—13, (—3,—2), {—6,8), (2,0), (g -—1), 0,v2).

2. Write the rectangular co-ordinates of the points whose polar co-
ordinates are:

(257, (2309, 425, (27509, (4-37), (16, are ten B).

(-8, are tan +/15), R <\

3. Through s fixed point, 0, draw a pair of reetangular axes. If a partjelN
rotates in a eounterclockwise direetion about O at a constant rlisf%é

3

of 6 units from (3, starting from the point {(34/3,3), while t}@
wvector deseribes an angle of 195°, give its final position, usin polar
co-ordinates, (b) rectangular co-ordinates.

Ans. (2) {6, 57/4), (b) (@(2 —34/2).
4. Repeat Exercise 3, with the radius vector of the pa 1{ escribing an
angle of 240° in the clockwise direction, .

N
115 DISTANCE BETWEEN TWO Pongg}

" {A) Polar Co-orr?g)zs
Let the two points be P, and Py, heir co-ordinates (5,8,
(p2,02) {the subseripts on theseﬁ{§n§$s are merely distingunishing

tags and have no other signi ce}, Also let d represent the
distance between P, and P

) A
The two radii OP,, %j and the line Py P, form a triangle
(Fig. 11}, of whi% ¢ angle included by the sides OP, and

6 FI (plvsl)

Paloz, @)

FIG. 11.—DISTANCE IN POLAR CO-ORDINATES.

0{32 18 equal 10 6 — 6. The use of the Law of Cosines from
trigonometry gives at onee,

([) a2 = plz + p22 — 2,01]02 COR (B] — 9-;).



POINTS 13

EXAMPLE. Find the distance between (3,75°) and (6,15%) shown in
Fig. 12,

(3,75%)

{,15"1
(g\‘\\
&

FIG. 12. {‘3{
5° — 15° = 60° {b

®

p1=3,p1=060,-8,=7
Then

N\
dt=04 36— 2.5.-6-cos 60° = 235&
(B) Rectangular Co-or ‘\

ad?P: whose rectangular

The distance between two peints Pp
» found by applying Lhe

co-ordinates are {(zy,y1), (Tz1e) coul
transformation from polar to reg ular co-ordinates discussed
in §11.4, after making usc of theagtlition formmla for cos (8, — 8z).
It is, however, more conve &nt to proceed dircetly, as follows:

Draw the line M P, po{@icular to the z-axis and Pof parallel
to the z-axis and in&s c¢ting the ordinate M Py in R, as shown

in Fig. 13. Q)
o

&0 Pilxgy}

.&X d Y - ¥

O
0 ol 2} R

% "%z

FIG. 13.—DISTANCE BETWEEN TWO POINTS,
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This conpletes a right triangle PaRP; with the required (.hs.tan(:e,
d, as the length of the hypotenuse, PPy, From the figure we
see that PoR = 2 — 20, and RP, = 4 — %2,

The Pythagorean theorem gives immediately
2) @ = {m — )" + ( — )*

As an illustration of the fact that this formula applies even when
the points Py and P do not lie in the same quadrant, conside®
the distance between the points (3,4) and (—5, —2). &g,

- (=2).

When we draw the triangle as before (Fig. 14), we note t@, the
base has a length 8 = 3 — {—5), and the altitude iz 6 =.<43‘-
Then the distance is ) &(b
- N\
VE LS = VB- (5P F 4 8D,

which shows that the co-ordinates of t-hc‘\@nts may be substi-
futed directly in Formula (2). ?\\Q

13,9

s
\sk T

&

~ a

&\}Q)é . 0
o2

“&i((\-‘s,-a

00 e 8 _,}T_

FIG. 14,

. 3

In a similar way, we can show that the fo

) rmula is always valid,
regardless of the positions of the points

in the four guadrants.
EXERCISES
Plot the following points and find
1. (2,60°), (1,07). '
‘2. (12,185, (16,45°),

the distance between them:
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3. (2,607, (1,907).

4. {1,150°), (5,120°).

5. (—d,w/4), (3,-F=/4).

6. (—47/4), (=3,~=/4). 7. (8x), (6,—n/2).

8. In Exercises 1, 3, 5, 7 change the polar to rectangular co-ordinates
and then find the distance between the points,

1f three or more points lie on a straight line, the points are said to be
COLLINEAR.

0. By the use of the distances between points, show that the points
(12,907, (4+/3,0°) and {6,30") arc collincar. Plot the points and drzm
the line.

10, Examine the following sets of points for collinearify:

@) (33, 6.2, (—97. (1) -(-2‘« )( —) (—--o) Oﬁ{“b

11. Determine whether the following triangles are isosceles, ikateral
or scalene:
@) A(L2), B39, CR7). &
(b) A(O 4), Bi4,1), €(7,5). ,\o

(6} A{—2,0), B(2,0), C(0,2+/3).
12, Draw the quadrilateral with vertices A{—6 @ B{3,®, €(10,10),
D(—1,8). Is ihe ﬁgure a p'\m[lclogra "bectrmgle? Rhombus?

&quare'?

.6 DIVISION OF A LINE SEG IN A GIVEN RATIO

Consider the segment, PP, bu it ts divided by the point P,
whose co-ordinates are {(z,y), % t\m scgments, whoge lengths
have the ratio /v, If wodyaw the horizontal and vertical lines
to make right triangles hown in Fig. 15, we have the similar

> :
P

o y

4]

T

FIG. 15.—DIVISION OF LINE SEGMENT.

&
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triangles, PLEP and PTP,. Setting up the proportion between
sides of these similar triangles, we have

(1) = —_f

When we solve these equations for the values of z and y we

find that
Tz -+ 7o Tiifs + Tain s\
i , g 2T TN

1trg Y Lk &Q’
Since by the segment PP, we understand the direet (@gmem’:
from P; to P,, the scgment PoP; is in the OPPOSE irection.
Hence if PiP; is considered as positive, Py w be con=id-
ered negative. Then, if P lies within the s@ nt P, both
segments F1P and PP; have Lhe same sense er both positive
or both negative) and therefore the ra WP/ PP, is positive.
If the point P lies outside the seg 1P (Py between P and
P, for example), the two segment{ K1 and PP; have opposite
directions and thercfore opposit@ns. Then the ratio is negafive.

(2) T =

Since division by gerois im@m le, we exclude the case 7+, = 0.
This case implies t-ha:té{l = PP and there it 1o such point.

EXAMPLE 1. F%@e trisection points of the segment (2,—1),

(5,2). é

(2,-13..

FIG. 16.—EXAMPLE 1.
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There are two trisection points, whieh divide the segment in the ratios
1/2 and 2/1, respeetively {Fig. 16). Hence for the required points we
have

15422 . 1-2+42:(=1)

2= =3, y= =0;
3 3
254 1.2 2-241:-(=1}
T = 3_. = 4, Y= -f = i,

QA
FIG. 17.@;«&5 9,

Let the co-crdinates of @s&red point be z and y. Sinece the first
segment iz to be t\ﬁ'i(‘% ng as the second, it follows that the ratio

must be 2/1 or —%¢/1,Mepending on whether (2,%) iz an internal or
external point of egment. Hence the poinis are

C@Sﬁﬁiﬁ£=4, p 2215

3 3

—2:541- 224141

00 S .y —

A special case of this formula, which is very important and is
actually used much more often than the general formula, is that
in which P is the mid-point of the scgment PrPa. In that case,
r = 1o, and Formula (2) becomes

Ti+ T Y + Y2

ey

®) T2 2
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3.

6.

8.

 EXERCISES

Solve Fquations (1) of this section for x and v. .

Find the ¢o-ordinates of the poiut P, which divides the line segment
PP, in the given ratio, and check the result by comparing the dis-
tanves PP and PP,

. 1
(a) P.-1,—2), Py{4,3), ratic = T

(b) Pu(~2,0), Py(5,1), ratio = %-

(c) Fu(-2,1}, Py(2,3), ratio =-_3—4- « &N\

Find the trisection points of the segment between the points ,@

and (10,4},

Find the point on the line through (3,1) and (5,5} that is @es as

far from the first point as from the last, <

{a} The mid-point of a line segment is the point (21X one end
point. of the segment is (—3,2). Find the other ,ed% oint,

A\ ,
(b) A segment P\F,is divided in the ratio 3/ @ point of division
being {0,—3). If P, is the point (—6,—9); 2

Flot the triangle with vertices 4(—2,—4), @ , and C(—6,4), Repre:
gent the mid-poinis of sides AR, BC, an respectively, by €7, A,
B, Bhow that 4'B’ = 1484, B'0" = and "A' = Lo A(.

In the triangle of Exercise 6, find oints D, E, F on the lines
AAY BB, € (medians) that divi Ivthe medians in the ratio 2/1.
Interpret the result. é

c

The points A(0,0), B(a,0), @ are vertices of a parallclogram,
ABCD, Find the co-ordi :0f ' (opposite sides of a parallelogram
are equsl), and show b

diagonals bisect each ofer.

The center of mass WO Masses is & point on the line joining the
two and dividing line into segments inversely proportional to the
messes, Thus i %ass of 2 pounds is placed at 4, and one of 1 pound
is placed at %, the center of mass, €, divides the segment A8 in the
ratio 14, TKishis the principle of the simple lever, which we have
met in fies 88 wall ag in elementary alpebra.

82 of 3 lbs. is placed at A(1,6) and a mass of 5 lbs. at
»4). Find the center of mass, P,

ind the ecnter of mass, @, of a mass of 8 Ibs, placed at P(6,19/4),
and & mass of 2 lbs. placed at ¢ (12,7). This point, @, is the center

theory of the present section, that the

§ of mass of the three magses 3,5 and 2 lbs. respectively, placed at.

A(1,8), B(9,4) and (12,7.
If cqual masses are placed at the three vertices of a triangie,
the center of mass is culled the centroid of the triangle,
Fing the centroid of the triangle 4 BC of exereise 0,
Find the center of mass of triangle A(—4,3), (2 1 ' i
B1bs. at A, 4 I, at 5, and  lhe ne ¢ ) 21, €O, with

Find the controid of triangle ABC of Exercise 11,

1.7 AREA OF A TRIANGLE

Consider the ares of the triangle (in Fig. 18)

{A) Polar co-ordinates

whose verticos are,
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the pole O, P, Ps. Let the two sides OF,,0F; be p1,0: and the in-

O
FIG. 18.—AREA OF TRIANGLE, POLAR CQ- INATES.
cluded angle 8; — 0,. Then, from trigonome{\%'e write

Pt sin(ﬁz — &), @oé

Plpz(sin 6-3 . 0@1 — 08 82'8‘11’] 91).

o
In order to find the area gfypiriangle P1P:P; as shown in Fig. 19,
we draw the radii GP¥N;, 08, thus forming the three triangles
OP:1Ps, OP,P;, OPlé The desired ares can be found by adding

g .

(1 S =

B | —

Bd | e

FIG. 19.—AREA OF TRIANGLE, POLAR CO-ORDINATES.

the areas of the first two triangles and subtracting from their
sum the arca of the third. Thus
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(2) S(PrPoPy) = S(OP ) 4+ S(OP:F5) — S(OP.Py)

1 . .
‘é[pgpl sin(f; ~ 6;) ++ psoz SiIn(0; — 62) ~ papy sin(fs — £1)].

If, instead of —sin(fy — #1) in the last term of (2), we write
sin(f; — 8;), the formula may be written in the form

1 , . X
S(PyPyP;) = é[mps Sin(f1 — 03) + papr sin{6s — 61) + psps sin (B, —{S§\
\

in which the subseripts are seen to follow the eyelic @ 1,23
as we go from one term to the next. "\33

EXAMPLE 1. Tind the area of the triangle in ﬂﬁ%, with vertices
at (4,309, (845), (2,90°). \)\>

1 .
S = 2(8-4-sin 15° + 8-2.5 @» -4-5in 60°)
2 S
= 16-0.25882 1 8-0.70A M 4-0.86603
= 414112 4 5.656%3&}46412

= 6.33388,
N

FIG, 20—EXAMPLE 1.

(B) Areacfa triangle in rectanguler co-ordinates

Let the vertices of the trisngle he P, P;, with co-ordinaies
(?1?y1)1 (xz,yz), (333:93)-
Formula (1) of SIL7(A) can be changed to rectangular co-ordi-
rates very easily, since
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(8} pi1COS B = Ty, oSN Gy = 3, prin B = Y1, p2008 By = Ta.
TFormula (1) then becomeq

1z g
@) S = o — m) = L [0
2|xz ye
In like manner, Formula, (2) reduces to
1
1]x 1 . 1)z i oy
5) S(Puapy = 2[B0] L me Lo 5|7 v 1l
2|ty 2)mys 2 ’.’1:1 Y3 2y 15 I|

\<\

For case in memory and computation, probably (5} is t
form. However, in case the student does not know dete nt~.
of third order, he may usc the equivalent form \I‘?}

! _
() S = §(anye — 2ty + Tayps — Talz + :CS'“\\Q«&I?JS)

= %[xl(yg — #s) + Tolts — ) 4{{%’(?,’1 — vl

The student should carefully note tl@ he points were chosen

s0 a8 to describe the boundary 1® iriangle in the counter-
clockwise manner. If the points 8r8 faken mn the reverse direction,
the formula gives 2 negativ ult, with a magnitude equal to
the arcs.

EXAMPLE 2. Find %\Qa of the triangle (2,3), (-2,5), (~4,—2).

é@e} .

[EE 1]

FIG. 21.—AREA OF TRIANGLE, RECTANGULAR CO-ORDINATES.
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If we plot}f.}\e triangle (Fig. 21}, we find that the points as given are in
the counterclockwise order. Then
2 31 ‘
BN 51 = 2BG-c2) + (—B(-2-3) + (—H -5
9 421 2

1

- %(14-1- 10+ 8) = 16,

8 AREA OF A TRIANGLE IN RECTANGULAR Q-\
! ORDINATES (ALTERNATE PROOF) {é.?
The formula for the area of g triangle can be derived w@&u he
use of polar co-ordinates. N

4

N
The arca of the triangle P,P;P; in Fig. 22, can Ké’&)und by add-

é}{} K M L
FIG. QQ&EA OF TRIANGLE, RECTANGULAR CO-ORDINATES.
'ng@ areas of the two frapezoids PYKMP; and PiMELP,, and

acting from that sum, the arca of the trupesoid P,KLP,.

O\%Iwe the area of a trapezoid is one-half the sum of the paralicl
0 sides multiplied by the distance between them, we have

' 1 1
(1) Al“e&. PlKJW.Ps = EKAM(KP1 + 1M.Ps) = §(x3 - x;) (?j‘l =+ ya),

1
A_rea. P;-;MLPQ = éﬂ’{L(ﬂ'{Pd + I,:Pg) = é(zﬂ — .',C‘g) (y‘a + 1}2),

1
Area, PlKLP? = EKL(KPI +LPy) = %(372 — )y + y2).
Then
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{2) Area P1PyP; = arca PLKM P+ area PuMLP, — area PLKLP,

b

4.

gl

=]

1 1
5(553 -z + ) + 5(&'4 — 23){ys + 1)

- 1(% — ) + 1)

NIP—* bl | =

(s — Tayis + Tz — Xayz — Tath + Tiys)

|
=_imyll ¢
2 fﬂ?s y: 1 . ﬁ(b{*%

EXERCISES \‘Q

Derive Formula {5) of §I1.7 from (2). &
Find the area of the following triangles: (b'
(&) {1,607, (2,90%), (3,150°). ‘\

® (-22) co, (13)

Change the points in Exercise 2(a), t
pute the area in the new system, hus check the result,
I three points lie on a straight what is the area of the triangie?
If the area of the trinngle is geroYcan you state any property of the
three vertices? [Jse the resué\in testing whether the foliowing sets
of points are collinear. 0\
(2) {(0,6), (8,0), (4,3
(b) (1,0), {7)_2)) 3:

12 W Y

(C) (wl:yl)) (zb —2—' _T—) -

Given the tzi e A(—4,-3), B(4,3), C(0,h). Let A’, B’, (' be the
midpoints 1e sides BC’ C4 and 4B respectlvely "Find the ratio
of the @of triangles A'B'C" and ARC

GivenW® triungle (2,0}, (0,0), (—¢,0). Shr}w that the triangle whose
vertiged are the midpoints of the sides of the given triangle has sn
Az ‘, that of the original trianglo.

tangular co-ordinates, com-~

e any triangls, and henee that Txereise 6 proves a general property

0 e that by choosing the points as we have, the given friangle may

7.

8.

o,

10,

of all triangles.
Show from either (5) or (6) of §I1.7 that if the vertices of the triangle
are taken in a clockwise order, the result obtained for the area has &
sign opposite to that found with the points faken in counterclock wise
order.
Find the length of the altitude of triangle 4(4,2), B(0,68), C{—54)
drawn from B

Plot the triangle whose vertices are af P(l,-5), the origin, and
Q(4,0). Find the area.

The vertices of a triangle are P(—2,1), @(1,1), R{4,9), The area ia .

three square units, Find y (two possible answers),

= _[z1(y2 ~ ys) + 2215 — y1) + 2(tn — yw)] @

1 E:cl ¥ 1 : 0&
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19 SLOPE OF A LINE

Suppose a line mects the z-axis at an angle «. This angle 1s the
one ahove the r-axis and to the right of the line {sec Fig. 23). It
is called the angle of inclination of the line. We find it convenicnt
to have a numecrical measure of the steepness of ascent of the
line, as wo go along the line, say, from left to right, Tf the angle
of inclination is more than 80°, the ascent becomes a descent,
and therefore the numerical measure should be negative\We
find that the tangent of the angle of inclination serves tT:N pur-
pose very well. We call this measure the slope of tﬁ e and
quite generally designate it by m.

.

The slope of a line can be expressed direit’@in terms of the
angle of inclination, that is, ,\Q

(1) m = tan a.\>\

The numerical value can alg %und in terms of the co-
ordinates of two distinet poi the line. Lei the two points
on the line be PP, as sl%n in Fig. 23. Draw the horizontal

FIG. 23~SiOPE OF LINE.

and vertical lines forming the right triangle PR P,
nometry we recall that

. From trigo-
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B _w-m
PR Xy — Ta

{2) m=tan a =

If the angle a is zoro, the line is horizonial, and the slope is zero.
For every value of o there iz a single value of tan « = slope,
except for & = 90°. For this particular value (when the line is
vortical), the value of the tangent does not exist, sinee division
by zero i3 excluded from our algebra. However, we have been

)

aceustomed to indieating this ease by the symbol « and t((:}~

saying that the tangent of 90° is infinite. Inasmuch as this Sl
introduce ne misunderstanding, we ghall adopt the poligy™of
calling the slope of a vertical line infinite, though a vegk Shrict
interpretation would demand that we always say it doei t exist.
In most eases & fignre will suggest the proccdur("\ e followed
in situations involving this special case, \>

It is suggested that the student actually ca{l"&fuct figurcs and
work cut the details to show that the folUol (2) is always the
same regardless of the quadrants in wlubi #; and 2y fall.

EXERC
1, Draw the line through cach of following pairs of pointe. Find its
slope, e, and the angle of ill(ﬂlﬂl& Yo, e
{a} (52}, (30,7).
{e) (~1,5), (0,4).
(d‘} (636)7 (_2)0
(e} (0,—7), (

0 (-84
() (4 —é?

2, Draw riangle whose vertices are 4(—3,0), #(5,—1), C(3,8). Find
the glopos of the sides.

the lines given by (4,7), (5,9 and {—3,0), {—2,2) on the same

wijof co—ordinate axes. Ave they parallel? Why?

Qre the lines 1{g), 1{c) perpendicilar? Why? Are the lines determined
by (2,73, (5,9) and (6,6), (8,3) perpendicular? What iz the relation
hetween their slopes

5. Draw any trinngle with vertices A{zy1), Blanyn), Clegye). Lot AY, BY
be the midpoints of the sides BC, 4, Show that B’A’ has the same
slope as A8 and is half as long as AB. What is the theorem In geometry
that is thus proved?

6. By means of slopes, determine whether the following sets of points are
collinear:

(a) (I:I)r (_61'_'4); ('1'12)
(b} (2,2), (0,-5), (=2,8).
(C) (3!4)1 (5|6)) (_' 1?0)7 (U,—5)
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SUMMARY OF CHAPTER I

Relations between rectangular and polar co-ordinates
x=pcost 24y =p

y=psind %=tan9

Distance between two points ’\Q\
d2 = g7+ p5 — 2pips COS (61 — ) Oﬁg
= (%= %)+ (@ — p)? “3’.
- - » - \
Division of a line segment in given ratio r,/r ﬁ(b‘
_ X+ no 1’1!}2 \z 1

i+t

Special case: Mid-point of segm&

I1+I“$ ¥t i
x=——\$ ¥ =
é. 2

Area of triangle PlPé.\

1
=3 [P%ggl\(f% — 81) + pypa sin (85 — ) — pypy sin (65 — 6:)]

iy — ys) %Yy — ) + x:(y — g}l

\O Xy
S o
xsy31|

m=tan o = ho i
X1 — Xa
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THE STRAIGHT LINE

3
oy
@

»
1 LOC (b,\>

Az we ruuy recall from plane geometry \Qf%us consists of all
points that satisfy a given condition,{gnd no other paints.
Thus, the locus of points cquidistan®bm two fixed points is
the perpendicular biscetor of the¥ne segment joiving them.
The locus of points equidistand®¥om two intersecting lines is
the biscetors of the angles boi®ween the Jines. The locus of points
at a constant distance fl.‘i@ given point is a circle.

As we saw in the beg@in g of Chapter II, we are concerned with
the twofold pro&@ of finding the geometric locus described
by an eguatio which the co-ordinates of a point are the
variables, @% determining the equation that will deseribe a
given locys\NFor the sake of siraplicity, we limit our variables,
as befo@‘gg poiar and rectangular eo-ordinates.

A@-‘portant phase of our work, so far as experimental science
is concerncd, is the establishment of an equation that wil
deseribe the results of experiment. Since the attack on thig
problem.involves a determination of the nature of the locus as
well as the setting up of the desired equation, we can take it up
only afier the vest of our study is pretty well eompleted,

We shall hegin our study of loci with the straight line.
2T

&

O
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o8 ' THE STRAIGHT LINE

fIl.2  THE STRAIGHT LINE iN POLAR CO-ORDINATES

Suppose we have a straight line perpendicular to the .radius
veetor of the point (p,w} and passing through that point (Fig. 24),

FIG. 24~—STRAIGHT @m POLAR CQO-ORDINATES.

Let M be the given ?&, and P be any point of the line. The
triangle OMP is @ ht triangle, with the angle at the origin
equal to § ~ %ﬁ}en, from trigonometry,

MmN poos (6— w) =1,
which@%e equation in polar co-ordinates (p and ) of the
lin %own

Q\ EXERCISES
@ o each of the following,

r write the equation of the line determined by the
given data.

L p=3 0= 45 6. p =3, w— —30°

2. p=20=60° T p=2 =0

3. p=1,w=120" 8 p=4 0=y

4. p=4, w=135° 9 p=0, 0= 45

5. p =8, w= g

In each of the
the given line,

0. (85) pess@-20) oa 12 120, 5 cos (- 607 - 2.
@809, poos @ -0 =5, 13 (=67) p ooz (0 - 1507 =3,
14 (4,7), p cos {9 — 45%) — 2+/2,

following cases, examine whether the given point lies on
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.3 NORMAL FORM OF THE EQUATION OF A
STRAIGHT LINE

The radius vector p (see Fig. 24, p, 28) is said to be normal to
the line MP. (Normal and perpendicular are somctimes used
interchangeably,)

li we apply the transformation from polar to rectangular
co-ordinates, Equation (1) of §T1.4,

(1.) peos@—w)—p=0, 0&%

01 p €0s # 608 w+ psin Fginw — p = 0, .%’
hecomes, since p cos 8 = z and p sin 6 = i, {&

(2) Teos w4 ysinw — p= 0. *‘\Q)

Every straight line has an equation that ma written in this
form, sinee, elearly, through the pole or oxioy , there ean always
be drawn the normal to the line, whosc th will be p (p may,
of course, be zero), and this normal Y always muke a definite
angle, w, with the positive z-axj ince this equation is of
the first degree in  and y, it fqlg‘.w-s that.:

Every straight line has an @on of the first degree in x and y.

One question may o ?ﬁi}o the thoughtful student. Does every
equation of the first\d@sree in z and y represent a straight line?
The answer is y@ s the following diseussion shows.

Consider th@ost general form of the equation of the first degree
in z and ga

Bl Az + By + C = 0, where 4,B,C are constants.

HeM, of course, if the equation is to be of the first degree,
4 and B eannot both be zero,

Tf Equation (3) can be reduced to the form {2) we shall know
that it represents a straight line. 4 and B may be greater than
unity, while sin @ and cos « are never greater than unity in
absolute value. Suppose we attempt to fit Equation (3) to
.the form (2) by dividing by a constant, k. The resulting equa-
tion is
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If this equation is to be of the form {2}, we must have

4 ne® o _C
(5) cosw——k, Smw_k’ p= L

We remember that "\<\
(6) sin® o+ costw = 1, Oﬂg

is an identity that holds for all angles. Substitution af{he valucs
of cos wand sin w from (5) in (B) gives

&
S RER

k k

and consequently
) k=% \g% :

/\

(=N}

*

There remains the quesgi‘gg to the proper sign beforc the
radieal. If we assume th is positive, C/k must be negative.
Then we must use t, ign opposite to that of the constant
term. In case the €093tant term is wero, we may assume that
@ < 180°. Then*®B¥% = sin @ must be positive, and therefore
we use the sai®sign as that of the y-term.

We ha\@wn that every equation of the form (3), the most
genor¢ uation of the first dogree in z and #, ean be reduced
to orm (2), which we know to be the cquation of a straight

&a‘& Tt follows that

0 Every equation of the first degree in x and y represents a

straight line.

EXAMPLE 1.

Reduce the equation 5z — 19y — 24 —
form.

0 to the normal

A=5B=-120=-26k=~2V¥ {12 113
Since ' = —26, we chooge the -+ sign, and write

]

-—x 12? 2=10
IR
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Hence

0% 5 sin 12 2
S o= = — — =9
13 © 13 7

EXAMPLE 2. Write the normal form of the equation of the straight
linc for which p = 4, w = —45°,

Dircet substifution for p and « in (2) gives at once

- N <\
Y T — 5 ¥—4=0. &(‘)

EXERCISES ‘%
1. Write the normal form of the cquaiion of the %tra.lp;ht H & *hich

a = 45% p =4,
Eb)) : _ 1350:‘; —a fg) w = are t'm ﬂu
€) w= 0°p=Hh.
(d)y w= 90°p=1. (h) w::u'cta
{8) = 30”1 p =6,
(f) w= 60°p=
2. Reduee the following equations to nomr@rm and determine the
vahies of o, and p: v
fa} 3z — 4y — 15 =0. {e) A+y—10=0
(b} 12z 4+ 5y 4+ 26=10 (. ~y =10
() Te— 24y + 50 = 0. 20+ 3y+4=0
fdy a5+y—6=0. be + 4y — 9 =0
3. Draw the straight lines defl in Exereise 1.
4, Draw the straight lincs ¢ ponding to the equations in Dxcreise 2.

5. Write the polar equn(& f the lines defined in Exercise 1.

Ans. 1. (¢pcos (B——-) =4 {e} pcos (8— g) = 8.

peosd =0
6, Write the Eg@equaﬁons of the lines corresponding tu the equations

in Exerciz
QQ‘IS 2. {a} pcos |:H — are tan (— ;)] =3 () &= g
@ (d) pros (0 — T—;) =32,

ngri ve Equation (2} assuming that o is in the third quadrant.

Show that the form of (2) is not changed f w is replaced by « + 180°
and ¢ by —p.

.4 DISTANCE OF A POINT FROM A LINE

Suppose we have the equation of the line given in normal form,
(1) reos o+ ¥ sinw—p =10

If the sguation is not already in normal form, we cah make it so
by applying the method of the preceding section (§ITL.3).
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In Fig. 25, 0M = p.

<J

FIG. 25.—DISTANCE OF A PO OM A LINE,

'e%oint {@1,31) parullel to (1).

e makes with positive r-axis

Pass a seeond line through the gi
Sinee the normal to the secon
the angle w or w 4+ 180° ag gly as the two lines arc on the
same or opposite sides ofhiRc origin, the only difference in the

equations is that p is P@laced by p(=0M,), so that the second
line has the equati@

(2) x;\

q CO8 @+ ¥ 8in w — Py = 0,

where p, i 1tive or negative aceordingly as the line is on the
SaTne o osite side of the origin ag (1), and is zero if the
line

S through the origin.

N\ .
e the line {(2) passes through the point P, the co-ordinates
L) satisly Equation (2), and hence

(3) TCOS @+ phsinw — p =0,

The required distance, QP;, is seen to equal MM, hence
(4) QP

=Dri—p=ux eogw—[—ylsinw—p.
Since p is either positive o
dlreclted segment, reading from the Jing to the point)

‘ L the origin are on opposite sides of the line (1).
If QP is negative, they are on the same side of the line.
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EXAMPLE. Find the distance from the line 24z — 7y + 50 = 0 to the
point (1,4}, shown in Fig. 26.

Reducing the equation to the norinal

24
_ —-:."AP% - 2=10,
25 D

and then, substituting the@ordiuates (1,4), we have

SER) o

25

4 °
EXERCISES

1. In eagk 1e following, find the distance of the indicated point from
the g line:

Nk Hdy +5=0,(25). (¢) bz+4y—2¢=0, (41).
T+ Ty — 19 = 0 {3,1). (d) 2z -y+2=0,(2-2)
(€} =+ y=8,(12,-6).
Het up the condition that the point (:z',y) shall be equally distant from
the two lines,
Br 4+ 12y — 10 =0, Tz — 24y 4+ 14 = (.
May there be two angwers?
3. Find the pquations of the bisectors of the angles between the lines,
20 + 3y~ 6=0,3c -2y —-6=0.
4, (a}) Bhow that the line 2% + 3y = 7 passes through (2,1), (5,—1).
f6) Find the distance from the line 22 + 3y — 7 = 0 to (3,2}
(c) Find the distance hetween (2,1) and (5,—13.
(d) TUsing the results of (b) and (r), find the ares of the triangle whose
vertices arc {(2,1), (5,—1), (3, )
fe} Verify this resuit by use of the formula in §I1.7.



34 THE STRAIGHT LINE

5. (&) Show that the peints (2,11}, (z,¥:) are both on the line
(n ~ vz + (32 — 2y 4 Ty — 22y} = 0.
(b) Find the distance between (z,y,)} and (zs,ys). ] .
(¢) Tind the distanee of the point (24,5} from the line of Exercise
5(a).
(d) U(sing the results of {b) and (¢}, find the area of the triangle

(211), (Rage), (o).
{e) Check the result of {d) agsinst the formuls in §IL.7.

6. Find the equations of the bisectors of the interior angles of triangle
A(2,-1}, B(5,1), C(—1,10), and show that these three lines are ch-
current.,

7. Repeat Exercisc 6, using the triangle (z.,3:), (22,ys), (zi&t\us

proving the theorem for the general euse. State the theor
8. By the method of §111.3 draw the lines

El) 8z —4y +6 =0, : §>
2) 5z~ 1%y~ 6 <0, N
(3) 3z4+4y—18 =1, (?
and find the points of interscetion 4, B, C\ét e pairs (1),(2);
(2),(3);(3),(1). \
9. Tind the equation of the bisector of angle &the triangle ABC in
Exercise 8, and its intersection, (¥, with % de 4B.
iI.5 STRAIGHT LINE THROU TWO POINTS
A straight line is determined b ty two of its points. Given the
two points (zy,y1), (x2,5), t@ uation of the straight line may
be written in several wayg‘gé
' (A Determinant method

. N .
H the point P( @s on the line PP, the arca of the triangle
PP\P; must be zch. Then, from the areg, formula,

Q} Ty l‘
(1) (b.b $1y1.1|=0.
X2z 1
QA
\?anding this determinant, we may write
00 ) = e — (@ = 2oy + (2, — Zay) = 0.

(B) Slope method
If the point P (Fig, 27) lies on the line P1Py, the slope of PP, is
the same as the slope of P\P,. Hence

@®) ?J‘?,’I:yl‘—-yg
h -1 I — o

© (@ Zs)

If %1 = 25, the line is perpendicular to the r-axts and its equa-
ton is 2 = z; (or Zy).



THE STRAIGHT LINE 35

FIG. 27 —LINE THROUG&ETWO POINTS.

If we clear of fractions and c;@ct terms in Equation (3), we get
Equation (2), C‘}\

EXAMPLE 1. W rlte equ ition of the straight line (Fig. 28)

throngh the two pg% 2) and (7,-3).
\‘C}
@ ' {5,2)

(7,-3}

FIG. 28.
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If we use Equation (1),

y 1
2 1 =0=bx+ 2y-29.
—3 1

= TR

=1

EXAMPLE 2. Write the equation of the straight line (Fig. 29) through
(lr‘i)) (_2)_ 1)‘

.\<\

0 O

v,

FIG. 29.
N\
If we use Equat’g&@,
__4 = 4__(_1_), or 3:.51 — 12 = By — 5,
Q-1 1-(-9
which @es to .
\O Bz — 3y +7-0.
r‘\ '
\} EXERCISES
{} rite the equations of the straight lines through the following pairs of
points and reduee the equativn in cach case to the form Ar 4 By+C =0
0 L (295)1 (3,—2) 4. (_‘2;_2}1 (_“53_2)‘
2. (6,3), (2,1). 5. (—=1,~7), (—1,2).
3. ("_132)) (8!_4)- 6. (a's_"b)l (_”'!b)-
Reduce the following cquations to the normal form.
7. dz—3gyt35 . 10. x—y =24/3,
8. 12z + 5y — 39, 1. 2z — 3y = 5.
9 y—dz -3

2 y~lsya

24
Find the equations of the sides of the triangie whose verbices are
4(0,-4), B(5,2), C(~1,6), and check by solving the resulting equa-
tions in pajrs,

13,
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14. (2} Find the equation of the line through {1,1) and (—6,—4) and
show that the point (8,6} lies on this line.
(b) By applying the theory of this scotion, examine whether the
puints (2,2}, (0,5}, {—2,8), snd (4,—1) are collinear,
15. Plot the quadrilatersl with vertices 4(—4,0), B(6,0}, ¢(5,4), D(0,4).
(a) Bhow that DC s paralle] to 48,
(b) Find F, the point of intersection of 47 and BC,
(¢} Letting M be the mid-point of )¢, show that EM passes through
the mid-point of 48,

16. F¥ind a point of the line 47 — 5y + 40 = 0 such that the distance (rom
the line through (0,3) and (4,0} to that point shall be +10.2.
17. {a) Plot ihe triangle 4(2,—1), B(5,1), C'(—1,10), and show that the
medinns arce concurrcnt.
(b) Repeat 17(a), wsing (z,y1), (Beys), (24, thus proving tl(Q
general theorem that the medians of & triangle zre concurdéng

18. Show that the form of Fquation (3) of IIL5 is the same regabdlves
of the quadrants in which P1{z,y:) and Pul2.,y:) fall.

PR
6 SLOPE OF A LINE \\\0

In Equation (3) of the preceding sectio fUILS, we note
that the slope of the line defined by (z, d (2,32) 18

— Y\,
m = —xc
This is the negative of the qu@lt of the z-coefficient by the

y-cocfficient in Equation (2&‘\§ITT.5. It ¢an be shown that for
the general straight line, @ se equation is

(H N+ By+ C=0,
this same prope olds. That is to say, the slope of the line
Lis—A4/B, imus the quotient of the cocflicient of = divided

by the coo@ t of y. If the y-coefficient, B3, is zero, the line is
pcrpcni‘igia to the r-axis.
E@@LE. Show, by means of their slopes, that the lines

Jr=2y =4 6r—4y+7=0
are painliel.
'The slope of any line, Az + By + C =0, is —A/B; hence the slopes
of the given lines are, respectively, 3/2 and 6/4 = 3,/2. Since the slopes

are the same, the angles of inclination are the same and therefore the
lines are parallel (Fig. 30, page 38).

D
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N
4

FIG. 30.—PARA@ LINES.

EXE@SES

Determine the slope of each of ollowing straight lines:
L 20 4+y—-9=0, 5. 2z4+2y-5=0.
2, 4x—-2y-—-17=0. 6, Bz — 19 = 0.

3. 5z+2y—10=0..’\(\ 7. 4y —5=0.

4, r—y=1.

0 8& m—mz—(m~nty+1=0.
9. Given the str&fgé:t line Az + By + C =0, where B 0.
Find the pyqts Whose abscissas are z, and 7, respectively.

Find th % of the line joining these two points and show that it is
equal /B,

.7 APHING A STRAIGHT LINE

'D{QQ implest method of graphing a straight line is to find the
*ordinates of two points on the line, plot them, and use a
traightedge,
In general it is easiest to find the points where the line intersects
the axes. For example, 22 -+ 3y = 6 cuts the axes in (3,0), (0,2).

IF may happen that the co-ordinates of these points are frac-
tions, and thus somewhat troublesome to plot accuralely. Tn

ths.xt event, 1t may be possible to determine, by inspection, some
point whose co-ordinates arc integers.

For instance, the linc 2z + 8y — 7 = 0 has intercepts (distance
from the origin to the intersections with the axes) 7,/2 and 7/3,
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and these are not too easy to measurc. However, the point (2,1)
lies on this line. The slope of the line is —2/3. If we start from
point (2,1} and go 3 units to the right and 2 units down, we shall
have another point on the line, (5,—1).

In general, having found onc point on a line with slope a/b, we
can find a second point by moving b units to the right and & units

up (a nogative numerical value for a or b merely reverses the « {\
direction of motion), Q’\
EXAMPLE. Plot the graph of the equation 0

b+ 12y — 7 =0, (b{%
The linc passes through (—1,1) and has a slope of — 5/ may pass
12 units to the right and 5 units down, thus finding { a3 8 second

i‘— 12 X Z
T~ D

. 31.—GRAPH OF 5x + 12y — 7 = Q.

point on >h'ne (Tig. 31). In actusl practice, one does not ususlly note
the n 1l values of the co-ordinates of the second point, and the

Ford quite rapid.

EXERCISES
Plot the straight, lines whose squations are:
L 4z 4 5y — 20 = 0. L3 2z 4y=5
2. Bo—y=" 4., 3¢ — 2y =15,

5. 4e+Ty+3=0
Graph the following straight lines:

6. Through (1,—1} with slope 2. 8. Through (0,5) with slope —%-
7. Through (3,-2) with slope T o Through (2, -1) with slope 0.
10. Through (—2,5) with slope —%-
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e THE POINT-SLOPE FORM OF THE EQUATION OF
THE STRAIGHT LINE

A straight line is uniguely dctermined when a point on the line
and its direction, or slope, are given.

1i the given straight line is to pass through a fixed point Pi{z:,in)
and have a given slope, m, we must have,

@ e )
\\

where (z,5) iz any point on the given line. {}

This equation is more frequently found in t&hb‘f\oxm without

fractions,

‘ N
@ y— 11 = miz — aBN
O

If the student is interested in wr; ‘\such an cquation rapidly,
and in its simplest form, he m_é observe that we have, by

rearranging terms, @ *
(3) mL — {(mxy — yp) = 0.
Thus we may writgdthe equation of the line (Fig. 32). through

(4,5) having the €ype 2:

N 2-y-@4-5=0
or
‘bt} v

2-y-3=0.
&(} -

o
»

/

FIG. 32.—LINE THROUGH (4,5) WITH SLOPE 2.

In practice, the last equation would be the only one written, the
rest of the work bheing done mentally.
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Suppose the slope to be afraction, m = p/q. Then we should have
}
{4) Ex-y—(le"y1)=0-
4 i
it is more convenient if we clear of fractions, getting
(5) pr = qy — (2 — ) = 0.

EXAMPLE. Write the equation of the line (Fig. 33} through (6,5) ’\<\
with slope —4/3. .
dr 4 3y — (4-6 1+ 3-3) =10, 0&

dp 4 3y —39=10. «3’
Y

HG&@—GRAPH OF 4x = 3y — 39 = 0.

EXERCISES

In each of ¢4 @owmg, write the equation of the line with the given slope
through th¢dicated point:

1. (3, =9, E
z, Nym o= T. 6, {(—1,-2),m = 5

T—3), = 1—-1. 7. (—3,-2),m = g
4 (5,6), m - —5 :
5 (7,-3),m=—2 8. (—7,2),m = -

9. Plot the line through (2,5) with slope m = —24. Find the distance
of the point (0,6) from this line.
10, Find the distance of the point {12,—2) from the line whose z-intercept
i# 9, and whose slome is 14,
11. (a) Given the point A(b,c) in the first quadrant, and points B(0,4)
{a,0} (a pusitive). Find the coordinates of a puint £3, such that
ABCD shall be a parallelogram.
(b) If  be the mid-point of 40, show that 8L is divided in the
ratio 2/1 by the point of intersection of CE and BD.
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.9 INTERCEPT .FORMS OF THE EQUATION OF A
STRAIGHT LINE

Suppose. the straight line to have the slope m, and to pass
through the point (0,b), L.e. have the y-intercept b. {Fig. 34.)

&
o 3P
/ \J

/ 6\?/*

FIG. 34.—LINE WIT QED #-INTERCEPT.

The equation, aceording t-wu preceding $11L.8, is

(1) B yiboo,

or, solving for y, Q’\

(2) ‘\0 ¥ = mx+ b,

Thig form, %l as the y-intercept-siope form, is particularly
useful 1 g cquations by the substitution method. The

equatio any straight line, if it contains a y-term, can be

0 this form by solving for ¥ in terms of . Then the
nd y-intercept can be read dircetly.

nother form, known as the intercept form for the equation of
the straight line, involves both the z- and y-intercepts. Suppose
the line to have the Intercepts a and b, that is, to pass through
the two points (a,0), (0,5). We can readily see that the slope of
this line is —b/a, and hence the equation is,

(3) b + ay — ab = 0.

Transposing the constant term and dividing by ab, we have the
standard form,

{4)
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EXAMPLE. The cquation of the line with slope 3 and y-intereept
5, s

y=3r+ 5

The line with z- and y-intercepts 2 and 5 has the equation
oy
- =1,
2 3
EXERCISES

1. Reduce the following equations to the y-intercept-slope form: .

(8) 4c+y—>5=0. Ans. y = —4z + 5. \<\

(b) z-8y+4=40 o
{¢) bx+Ty—12=10. _ &{w

(dy Az+4+ Hy+-C=0. .
2. Write the intercept form of the following lines with the intnm(m%;.

(@) 2, 3. (b) ; 4 \

3, Write the eguations of the following lines with the,@ slope and
y-intercopt:

(a) m=3,b=56 (c} fn:S,b:SQ\
b) m=108=—2 (@ = LA
(&) m=-2"b=-1_8
4. Reduee the following equations to the i th form and read the
valuez of the intercepts:

-8y - 12=40, -+ 2 13 =0.
Eg)) éi + S?’— Gli 0. 0 Etci) “gt §y++ ¢ =0
.10 ANGLE BETWEEN T@.INES

The angle that a line, £, m.nkes with a line, Iy, is the positive
angle through which ongSghst rotate I in order to make it
parallel to (or coincidg@‘& th} &

o

FIG. 35.—ANGLE BETWEEN TWO LINES.
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If the two lines have direction angles o and o (see Fig. 35,
we see that the angle that I, makes with I is

1 ' B = qr — an.
Then
(2) tan 8 = tan (o — ag),
‘ran o — tan ag
"1+ tan o tan or Q&

_ N\
my — e A
- 1+ ?Rl??é-gl ﬂ(“‘b

If tan @ is negative, the angle that I, makes with L\san obtuse

angle. \S

There is only one case that might esuse in the applica-
tion of this formula. If the two lines arc endicular,

3) - o=y 9

Then, as we may recall from tr‘i@utry,

4} fan o = @"&} ’az = _t-ar: p”

1
or,@e;— —;1- or 14+ mymg = 0,

In this case, t%@ccomes formally a constant divided by zero,
i e by the symbol =, meaning that the tangent
7 Conversely, when thls happens, we note that the

@ f the lines, say b, is vertical, so that my = o, we divide
lumerator and denominator of the fraction in (2) by ms

&nd ehtain the limit of the result as my increases indefinitely.

00

EXAMPLE 1, Determino the angle between the Lines

T—2y=4 x4+ 3y = 17.
By the methods of §1T1.6,

1 1
M= - My = —— Th == < _  _
1 5 2 3 en tan g

~0

Henece 4 = 45°,
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EXAMPLE 2. Determine the angle that the Fine 3z + 2y = 2 makes
with the line 2z — 3y = 7

‘ 2
We have m); = =y Mg = —

3
Sinee mamz 4 1 = 0 the lines are porpendicular to each other,

EXAMPLE 3. Find the angle that the line 2z 4 ¢ = 5 makes with
the line 2z — 5 = 0. (See I'ig, 36.)

r\
FIG. &XAMPLE 3.
«

The slope of the first @ig —2, and the second {ine is perpendicular
to the r-axis. I ¢ angle which the first line makes with the

seeond is {b
O

N
0‘&&(\ = — arc cot (—2)
0 = are tan %

EXERCISES

L. Find the anple that the line 4z —y 31 =0 makes with
2z + 3y — 5 = 0. Plot. hoth lines.

2. Findtheangle between thelines 3z — 5y 4 9 =0and 102+ 6y — 7 = 0,

3. Find the interior angles of triangle 4(2,—2), B(8,4), C'{4,6).

4. Tind the interior angles of the triangle whose vertices are (—3,1),
(1,2}, (0,6).

5. Find the angle between the diagonals AC and BD of the quadrilateral
A(111)! 8(49"6)| 0(4-93)! D(2}5)‘

w

= —2) —
¢ = are tan (—2) 5

*

QL

N
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Determine the angle between the pair of lines given by the following data
and plot:

6. Ze+y=5z=0

7. 224+y-5=0;2+3=0.

8. Through {«-1,~1} and (1,5}; through (2,14) and (—3,-2).

9. Through (7,14) and m = —2; through (0,0) and (5,5).

TV, =0.
10. 5tg Liy+4=0

1. w =

N\

N
1.2. m=6p=6,w—§rp=. %»
13. Find the equation of a line through {4,13), making an @te f 45°

with the line /{—4) + 4/3 = 1. 3
14. Given the Jine 2z — ¢ = 4, Find the equation of u se %‘line through
(5,6) making an angle are tan (4/3) with the ﬁrswgm, : the figure.

I5. Bhow by means of {2) of IILI0Q that the an etween the lines
L eos wy + ¥ e ey — P =0, % 008 we + Y 8 oy O 08 ;) — we

N

{11 PARALLEL AND PERPEND@)}AR LINES
Two lines are parallel if they hay same slope.

w A+ Ba M = 0,
AZQ:+ ‘J+ sz 0:

have the slopes (—4,/ B&&(—Ag,f}?g) which are equal provided
that /(\
N Ay By

(2) é\(ﬁ} ABi=0 or [0
: Ay fig

This is just z@ther way of saying that the coefficients of x and

=@

are pro nal.
'I:he ines are perpendicular if the slope of one is the nega-
tz}\x eciprocal of the slope of the other. - ’
3) —14—1 _ B A4
0 \ Bll— Azj or 1da 4 Biflg = 0.

These relations hold except when the lines arc perpendicular or
parallel to the axes and the relations way be meaningless. But

in this case the lines are obviously either parallel or perpendicu-
lar to each other.

It somstimes becnr.ncs necessary to write the equations of lines
pa.rajlel or Perpend.lcular to a given line. The easicst raethod of
doing so is illustrated in the following.
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EXAMPLE. Write the equations of the lines parallel and perpendicu-
lar, respectively, to the line 3z 4 by — 7 = 0 and passing through the
point (2,1}, (See I'ig. 37.)

The slope of the given line is —3/5. @

Hence by (5) of §111.8, the parall can be written
Sz 4+ 5y £N32 4 5-1) =0,
or .c+.5y—11=0A

Since the slope of the&%penchcular line is 5/3, we have

Z— 3y — .12—3 l)—D
or é@) S5 —-3y—T=0

Note that che perpendicular line, we can intcrehange the 2~ and

,U-ccgl@s, changing the sign of one of them and determining the

cong crm by the method discussed in §IIT.S.

EXERCISES
1. Are any of the following psairs of lines parallel, or perpendicular?
{a) 2 +3y — 10 =8,4x+6y+13 =0
M) 2248y —10=0,60—-dy+ 13 =1
(¢) 2z +3y— 10 =0, 6x+4¥+13=0‘
) Sx—yd1=0, 10:0—;—2y+ 5=0.
{e) dx—y+1 —0 2z + 10y - 16 = 0.
{f) a:z:-l—l:y—i—r:ﬂ br — oy +d =10
2. Vind the cquations of the lines parallel and perpendicular, respectively,
to the given line and passing through the given point:
() bhe—y+7=0/(1,4. (€ =+ 12y — 4 =0,(-1,-2).
(b) 2r+3y+4-=0,0-5. (d) ozx+by+ec=0 (@,
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3. Given a quadrilateral A(-1,—3), B(2,1}, (9,2}, D(6,-2):

{a} Write the equations of the four lines 4B, BC, €D, DA. Show that
they are parallel in pairs, and hence that the figure is a parallelo-

ram.

{b}) %‘ind the length of AD.

{¢) Find the distance of B from AD.

(d) Find the arca of the parallelogram in two ways.

(e) Find the interior angle at .

(f) Write the equation of the line through B perpendicular to AD.

(g) Show that the line of {f) meets AD n its mid-point.

4, Tind the equations of the lines through the peint {0,9) perpendicy%r
te the bisectors of the angles formed by the lines = — o +‘|'\‘k ,
s+Ty—5=10 A

3. (a) Plot the triangle whose vertices are (2,—13}, (5,1), (—g% and

show by aralytic geomeiry that the perpendicular Midectors of
the sides are concurrent, and that the point of i section 18
equidigtant [rom the three vertices. ’*%’
(b} Repeat 5(a), using the triangle whose v ges are {zn,h
(1), (zz2), thus proving the peneral thﬁ that the per-

pendicular bisectors of the sides of a trig re eoncurrent and
that the point of intersection is eq®idddnt from the three
vertices.

6, On a map 12 by 10 inches, a straight lin from the N K. commer to
the mid-point of the opposite {West) & second lne runs from (our
inches east of the 8. W, corner, to a hree inches north of the same
corner. By analytic geometry find ngle hetween the two lines and
draw the bisector of the angle, whi*h appesrs on the map.

$$

/\
&
S&‘QMAR‘/ OF CHAPTER Il

The str: line in polar co-ordinates

\O{b' prcos(8—w)=p

\sﬂe straight line in normal form.
0{:} X-CoSw+ y-sinw - p=0
Ax+By+C
Distance of a point (x,,y 1) from a lﬁle
neoswtyisine—p=d

Ani+ By + € d
+VAar g
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Straight line through two points

xy L
X1 i 1|
Xz ife ].'
y_u
X — X

-0
R AN i
Xi— X2

Point-slope form of equation of straight line

y—t=mx— x

y-intercept-slope form

y=mx+b

Intercept form of equation of straight line \).

J—;+%=1 &Q

Angle between two lines

Parallel lines 6%

e
e

&
OC}

&Q’
W
s

Perpendicular lines

A4, 4+ BB, =0



CHAPTER

V

THE CIRCLE

&
&

IV.4 INTRODUCTION Ny

We define & cirele as the locus of pointsin a {bat- a constant
distance from a fixed point, In algebraic @agc, the condi-
tion, that the point (x,5) shall be at a distance, r, from
a fixed point (b)), is, alter radicals h @been removed,

1) ' (& —a)+ (yg\.,g5 =7

FIG. 38.—CIRCLE,

Any equation that can

n be reduced to this for ‘ ire
S on orm represents a eircle

r and radius can be read at once,

EXAMPLE 1 Write the e i .
. : d quation of the ) 7 .
Is (2,1) and whose radius is 4, cirele (Fig. 39) whose center

50
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FIG. 39.—EXAMPLE 1. (7 —2) )E = 16.

EXAMPLE 2. What is the locus repler@ d by the equation
P4yt —b6r+2+1=07

Collecting the z-terms {and the y-te

have

(2 — Bz + DN+ 2y + 1) =9

or

O )24 (¥ + 12 = 3

and completing squares, we

Comparing with Equatifﬁ\i\l we see that this represents a circle with

center at (3,—1) and

@m 3 (Fig, 40)

O\

(3, [}

FIG. 40.—EXAMPLE 2.
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A simiiar equation for the cirele can be found in polar co-ordi-
nates. We shall, however, limit the discussion to the two cases
when the center is at the pole, or when the circle passes through
the pole. Otherwise the form of the equation is too complicated
for convenient use.

If the center is at the pole, the equation may be written at once
and ig \(\

@) p=r Oy
O

If the center lics on the polar axis, and the cirele @‘9 through
the pole, the equation is <’b
(3} p = 2r vos 4, <\<}

since, as is shown in ¥Fig, 41, the trian \\QAP, being inscribed

\

A POLAR
AXIS

FIG. 41.—CRCLE IN POLAR CO-ORDINATES.

In & semicircle, is a right triangle.

Similé?r reasoning shows that if the center is the point (r,a), the
equation of the circle (Tig. 42) is

€y

p = 2r cos(f — a).



THE CIRCLE 53

o
FIG, 49 —CIRCHE.

EXERCI§§
1. In each of the following, determi 2 equation of the circle whose
center is the point € and who 1us is r:
{a) C(1,2), r =86 "8
&) (5,00, r =2 O
(e} €, 6). r= \/_

2. In each of the “mg circles, find the center and ra.dms, and de-
termine whe e given point lies on the circle:
(a) (y— 1 =35, (4,00.
b) (z + 3t =6, 0,+/2).

R 2) (J_ ) -3, (0,0).

(@ — 17 - (y + 2)2 = 17, (2,2).
QQ (£ +a)y + (y + b = 2@ + 1), (ba).
3 iven the center, €, and the radius, r, find the polar equation of the
circle. Draw the gra.ph
{a) Center at pole, r = 2.

(b) C(G,g)- r =8,

(c) C{4,0),r =4

(d} C(ﬁ,g)- r =34

(e) C'-(a,— )xr -5 {9 0(3,—33). r=3.
@ Clhmhr=4
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) Juati i dius.
4. Given the polar equation of the circle, find the center and ra
Dgrtermine Erhethcr the given point is on the curve. Draw the graph.

(a) p=>5rcoss, gg )

(b) o =06 cos (9 - Z) (—3+/3, 7).

(c) p=28sing, (_8, ’_2')

(d) p = — 16 sin 6, (—16, 12r) . <\
(e) p=10cos (f} + 13r) (9, - g) &g’\
) p=—4dcos6, (2\/2 ;) 0

given. Find the equation of the circle in rectanguls rdinates.
(a) (6,0}, =86. ®) (4 -")r=4 @ 2, f).r;z
3 \h 6

6. Find the equation of the circle with cent % ¢ origin and pussing
through the point {-12,9}. {?/&

7. Find the equation of the circle whas ier is on the r-axis and the
line 4z — 3y — 12 = 0, and whose iz the distance between the
lines 42 — 3y — 12 = (0 and 4z — 3NS32 = 0.

. *

3. In the following, the center (in polar co-ordinates) a&.&}% radius are

V.2 GENERAL EQUA OF A CIRCLE
The most general form ¢™he equation of a circle is
(1) A:cﬂ+A16\ Ge4 2Fy + C=0. (4 =0)

Since 22 and 2‘5\%«: the same cocfficient, we can divide each
term by A then proceed, as in IExample 2 of $IV.1, to
reduce t ation to the standard form (1).

If t (th hand member of the reduced equation is positive
t us 18 & circle, if zero, the loeus ig a point, and if negative

@re is no reul locus and the equation defines an “imaginary
0 irele,”

EXAMPLE. Determine the locus whose equation is

3+ 3t - R4+ 4dy=0. a0
Dividing by 3, we have

Pyt =0,

4 4 4
(:cﬂ—4:c+4)+(?+— =44 2.
¥ 3y+9 +9



THE CIRCLE ' 55

The locus is a cirele (Fig, 43) with eenter (2,—24) and radius 24+/10.

FIG. 43. &Q

The student must be able to writ » equation of any circle
having a given center and radiugmd to determine the center
and radius of any circle whosgeqaiion is given.

@ERCISES

1. Find the center an r?ﬁ{ s of each of the following circles:
(a) o2 432 — 4z —-1=0 -

() 224 g2 _é 1-09,

(e) 2z 4 3z — 4y = h.
(d) 9z 19?;+4=0
{e) \g+a:5+by+t‘=]

f) J — 4 - 6y + 20 = 0. How many real points are on the
cle ()7
&me to rectangular co-ordinates and find the center and radius.
) p=4cose
(b} o= —12 cosé.

(¢} p =siné.

(d) ,p =16 cos (3 - 1—3r) () p=16cos (H + zﬁr)
3. Change to polar co-ordinates:

(@) %+ 4% — 8z — 4y = 0. (b) 2 + 27+ 3z —y=0.
4. Bhow that the circles

#ry—2x—-10y+2=0
and (x— 12+ (yp—5PF=25
are coneentric.

|
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5, Tind the gencral equation of a circle with center at (5,8) and passing
through the center of the cirele #* + 4 — 25 — 10y +-1 =0.

6. Remembering that two cireles are tangent externally or internally
according as the distance between their centers cquals the sum or
difference of their radii, what can you say sbout the tangency of the
following pairs of circles? Plot.,

(a) x'+42=25255 4 - 18x +65=0.
() 4y —4s -6y +9=0,z2+y* — 10z — 1dy L+ 65 = 0.
(€) 22+yt— 18z — 24y + 224 =0, +4* — 16z — 16y + 64 = 0

7. Determine whether the point (2,4} is inside, on, or outside the circle
7 4yt =25 N

8. (a) Determine the position of (12,8} relative to 2* 4 ¥ = 52, with'(i\\
first. plotting. N

{b) Find the equations of the cireles having (12,8) for thei @er
snd tangent, internally and externally, respec@, to
4y = 52 \

9, {a) What sre the z-infercepts of 22 4 32 — 242 — 80 = 07
At these intercept points, find the equations oi{b, gents to
the circle, Draw the graph,

{b) DBy analytic geometry, show that the bise of the angle be-

fween the tangents in 9{a) pusses throug senter of the circle.

10. Giver the cirele #2 4 32 = 25, and the cho 0,5)7:(4,3). Show by

analytic geometry that the perpendicwldy biscetor of IP1P; passes
through the center.

11. Repeat FExercise 10 for the cir%Q_p ¥ =71 and the chord
Pz, n) P olzaye).

12. By analytic geometry, prove fie perpendicular from the center
of 22 + 4 = r? to a chord P@yl Poxs,y2) passes through the mid-
point of PyF,.

13. Given the circle z° + 3? and a point Pi{z.,y) on this circle and
in the first quadrant,Rraw the perpendicular P, to the diameter
A{—~a,0)B{a,0}, Whe@c ig & point on the z-axis, and prove that P,

is the mean p nal between AC and CF (ie. P:(-,*z - 40-CB).

V.3 CIRCLE@H OUGH THREE POINTS

We recall Qm planc geometry that the center of a circle
throug ¢ points, not on a straight line, is the point of
inte q©1 n of the perpendicular biscctors of any two of the
lin E\g'men’w, determined by the three points. Thus, if we find

equations of two of these biscetors, solve them simultane-
usly, and use the resulting point of intersection as center, with
a radius equal to the distance of this point from one of the

given points, the equation of the circle through the three points
can be determined.

This is a special case of the general problem of finding the equa-

tion of » circle when any three conditions which fix the cirele
are given,

EXAMPLE. Determine the equation of the circle (Fig. 44) through
the three points (4,3), (2,1, (5.2,—.6).



THE CIRCLE 57

{4,3)

(2,1

FHG. 44.—CIRCLLE THROUGH THREE POI >
Two of these perpendicular bisectors are (\(b'

x+ y__5=01 éQ

z—3y~1=08\*
and they intersect in (4,1} which iss‘h&. distance r = 2 from each

of the given points. The required e on of the circle is

A
(xéﬂ\r (y— 1 = 4,
or izt —}—9{"\ ix — 2y -+ 13 = 0,

6 EXERCISES

¥in of the foregoing illustrative example.
ation of the cirele through (0,5), (3,4), and (0,1).
Write th ton of the eirele through (2,—1), {—4,5}, and (0,5},
Tind t.h%c ¢ determined by (6,1), (—2,—3), and (10,7).
The @ ions of the sides of a triangle are .
{} r+2y-—-9=0, :
2 —y—3 =0,
9 r—2y+15=10.
{ind the cquation of the cirenmseribed cirele.

6. Plot the quadrilateral with vertices at (1,3}, (50), (8,4}, sx_nd (4,7).
Determine whether or not these points are all on the same circle.

H ol

IV.4 INTERSECTION OF A STRAIGHT LINE AND A CIRCLE

The problem of finding the intersections of a straight linc and a
circle is really a problem of algebra, involving the solution of a
bair of equations, one linear and one quadratic. The method is
Hlustrated in the following example:
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EXAMPLE. Find the common points of the straightlinez + 3y — 7 =0
and the cirdle Ta? + 73 + 11z — 23y = 0, shown in VFig. 43.

23

‘Q{b
N
FIG. 45, &(g}

From the first equation, we have Q

-

=7
Substituting in the second, “’$
343 — 204y -+ 63V 757 + 77 - 33y — 2y = 0.

After simplifying by co@ng terms and dividing by a common numeti-
cal factor, we haye quation

-2. H he desired points are (1,2}, (—2,3).

? y¥—5oy-+b6=10
From w fain ¥ = 2 or 3, and then, by substitution, x = 1 or

1@& are three possible cases of the intersection of a straight line
a cirele, corresponding to the three possibilitics of the solu-

.: ) tion of a quadratic equation in one unknown.

When we eliminate one variable from the cguations of a straight

line. and a cirele, we have a quadratic equation in the remaining
variable, of the general form

a4+ bxr+¢c= 10,

This equ;ation. has either real and distinct roots, real and equal
roots, or imaginary roots, according as the discriminant,

b — dac,



THE CIRCLE 59

is positive, zero, or negative. Corresponding to these threc cases,
a straight line meets a circle at two real and distinet points, is
tangent to the circle, or meets it at an tmaginary point (no real

intersection), according to the values of the discriminant of the

quadratic equation found by eliminating onc variable.

EXERCISES

In Excrelses 1-7, find the points of intersection of the given line and eirele,
and state whether these points are real and distinet, real and eoincident, or
imaginary.

1.

CIR RN RO AN

10.

11,

y=2z45 2 4 y* =25, 0
¥=0, 22+ -8z + 8y + 16 =40 by
x—y =20, 4P — 12y + 27 = () &‘3}

z =1, By — 12+ 48 =0, &(&
Zz+y =3 Bty -3z+1=0. .Q

2 + V3 — 17 =0, 2" +y* — 8z + 7 = 0. N

For what values of % wiil the points of intersectio b&x + % =kand
2+ y® = 5 coineide? {Fliminate one variahle the discriminant

of the resulting quadratic equal to sero.}
For whal value of m will the points of inter@n ofmz —y=m—2

and 22 - 3 = 5 coinecide? )
Find the equation of the tangent frogmdthe point ((L,8) to the circle
24 gf o dr — dy =0, {(Write the fion of & line through (0,8}
with gJope m. The points of inte ion of this line with the cirele
mugt eoineide,)

Find the equations of the tn.p@ts from (0,1) to the circle with eenter
(3,2) and radius V2. 0\

y=a41, 2 g = 25 <§§
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SUMMARY OF CHAPTER IV

The circle with center (a,b) and radius r

(x —a)+ (y— b)* = r?

or
P4y —-2ax - 2by+ @+ 2—-1'=0
In polar co-ordinates ’\Q\
p=Tr QQ
~ p=2rcosf 0

p=2rcos (f — a) y
&

General equation of a circle .\\()
Ax*+ Ay? 4+ 2Gx + 2Fy \&= 0.

Center: (— E, @*
A
Radius: wﬂ 4 F2— CA

Straight line tangent mrcle
substitute y = mx general equation

h—kAy +2Gx+42Fy4-C=0
Set disct@ of equation equal to zero and solve for mor b

@\
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10.

11,

12.

REVIEW OF CHAPTERS I, lll, IV

{a) Are the three poinis whose polar ¢o-ordinates are (84/2, #/2),
{&,7/4), (8v2,0) collinear? Test by using (1} distances, (2}
areas.

(b} Change the polar co-ordinstes of the three points of 1(a) to
rectangular eo-ordinates and test for collincarity,

Tind the polar cquation of the line z + 5y — 842 = (.
Write the equation of the line determined by the points, {—3,4),

(6,13}, and reduce that equation to the point-slope, the gencral, the
normal, and the polar forms.

&

Draw the lines given by the following data: Q(.)

(a) Point (~3,4), slope = —2. & e +dy—5-=0 e

3 T .

(b} w = 1200, p = 4. (d} pcos (3 + E) =3 '\“%
Find the co-ordinates of a émint dividing the segmen( —6,00
£,(0,2} in the rativ —5/2, and check the resuls. ,\Q
Draw the following lines and find the angle which t}@ line makes
with the second.
a) dz— 7T 4 =0, 6z~ 14 5=0
Ebj) x+sgf 9= 0 Mz — 8?5113 -0 ‘:é
() 4z+2+15=10, 122 — 57130 - O
{a) Plot the points 4(3,8), B(~2,—4), C(!

of a fourth point, D, such that Af
{b} Bhow that the diagonals of the
{e) By analytic geometry, show t
Find the length of the altitude,
(@), (o (Ta,ys).
Write both the polur and reéfdnzular equations of the cirele
{a} whose eenter in { gular eo-ordinates is (5,0), and whose

Iy
radius is 5. K
(b)  with radius 4, ;d enter, in polar co-ordinates, {4,r/6).
Arcle

. Find the eo-ordinates
13 a4 rhombus.
e ABCD are perpendicular.
1) bisects the angles ¥ and D.

n through (21,7:), of the triangle

Reduce z2 + 32 6+/3y = 0 to polar form, and find the center
and radius of '
(@) Find guation of the circle through 4(-5,0), B(34),
C 5).
(b} T(@ihg point D(0,5), a chord DE is drawn parallel to AR,
ind the co-ordinates of K.
Gii he circle, #? + * = 25, find the cquation of a circle through

7) and externally tangent to the given cirele at the point (4,3).
ind the equations of the tangents through (4,7} to the circle

1
:éz + #* = 13. Find the points of {angency.

14,

15,

Find the common points of the circles «* +y* — 23 + 8y — 8 =0
and 222 + 22 + 5y = 0.
Find the equation of the circle inseribed in the triangle whose sides
are the lines
z— 2y + 15
25—y
x4+ 2y— 9

9,
3,
0

b
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CONIC SECTIONS

.\(\
| &
V.1 DEFINITION OF A CONIC .

The ancient Greeks studied the curves known nic sections
from the standpoint of sctual scetions of e by & plane.
We could do the same thing, but find it m more convenient
to take up their properties from a diffe{' oint of vicw.

A conic section (I'ig. 46) is define the locus of a point such
that the ratio of the distance af\this peint from a fixed point
(the focus), to the distance _af\the point from a fixed line (the
directrix}, is a constant (@eccentricity).

&

&
\
a;\

FIG. 46.—CONIC SECTION.

These curves have been found of great importance, first because
they occur very frequently in nature, secondly, and this is in
62
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part a consequence of the first, because of very important appli-
cations. We shall, of course, in this text not consider their appeal
to the esthetic sense with theiv beauty of form and symmetry,
nor diseuss the very interesting fact that the heavenly bodics
in the solar system—the planets and the oceasionsl comets—
move 1n orbits that are conic scetions.

The observant student will recall having seen bridge arches in .

the shape of ellipses, or parabolas, which combine beauty o Q
form with great strength. Q

V.2 EQUATION OF A CONIC—GENERAL FO

Let ws assume the foeus of a conic at (m,n), a.n{{&at the
directrix iy the line (Ifig, 47)

(1) ax+ by + ¢ =
Lel the eccentricity be e, Then, from fhg&%ﬁmn,

\/(a: - m)i+ {y— 3?

(2)

FIG. 47.—CONIC SECTION.
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x

Clearing of fractions and radicals, and collecting terms, we
have an equation of the form

3) Azt + 2Izy + By + 2Gx + 28y + € = 0,
where A,B,C,H,G,F are functions of a,b,e;mne. As a result;

we state that

The equation of a conic section is of the second degree mQ

and y. | &(:b

The eonverse problem, of finding the locus of the genek; cqug
tion of the second degrec in « and y, is much xS complex,
except in special cases, and is handled, when r}@sary, by more

or less indircet methods. Various features problem will
be considered later and means devised fo rmining the foel,

directrices, and eccentricity when the i a real conic.
EXERCI E’b
In each of the following, write the tion of the conic with the given

focus, directrix, and eccentricity.
1. F({4,2), T+y—1=10

2. F(-3,1}, T — 2y 7\3, =
3. PEO), 2200, ¢ =
& F(—2,—4), %&5=Qe=
5. F(4a, —49 -0, ¢ =

@
I

6. F(l%b'é By 4+6=0
. r4+1=0,

@QOSW) g - 43 =
<> -Hm% 5z — 32 =0,
10,

{I)Illltﬂ;: development of §V.2, show that if ¢ = 1, Equation (3) starts

-1

@
I

o
1
el S ‘gg—‘wlcnww'—tmn—tw:“
e 1 lg = oo
-]

iy
1

bt — 2abzy 4 at + =1,
that is, the second-degree terms l'm-m a porfect square.
H. (a) Bhow that in Equation (3) of §v.2
A

(1 — e®a* & b2,

1

B =gt (' — e,
H = — abet,
g ~ ~ mfa + U} — acet,

— n{a® + b — bee?,
= (2 & W) (md + ni) — el
(b) Write the equa.twn of & coni¢ for which ¢ = 0. What is the locus?
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V.3 EQUATION OF A CONIC—POLAR FORM

As we have seen before, the sensgible thing, when studying any
particular problem, is to choose the casiest way. For example,
in studying the properties of a conie scetion, in general, we
should choose the position of the eco-ordinate system in such a
way as to make the algebra as simple as possible.

In polar co-ordinates, the distance of a point from the pole is «
the radius veetor, p. The simplest equation of a straight lin%,

not passing through the pole is 0&
{1) p=psec b, ‘C%’
where p is the perpendicular distance from the | the line

(Fig. 48). \>\

POLAR AXIS

0 FIG. 48 —POLAR EQUATION OF CONIC.

Then, if we assume the pole as focus, and the line (1) as direc-
trix, it follows that
T OR=1p, OF =p,

ON = p cos 8,
PM=NR=OR-ON=p—pcosB.
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The equation of the conic is seen to be

p —
p— preosd

@

= e.
On clearing of fraetions and solving for p, we have

(3) P
p= - .
. 14 ecoséd .
N
If we had chosen the directrix to the left of the focus, wii‘&%e
equation “3"
(4) : p.= —p sec 8, (é\

the equation of the conic would have been .« ﬂ
: &

o

gp
® T
1—e cogs\
EXERC

1. Bhow how Equation {3) is deri

2. Make a drawing of the case j
pole, and show how Fguati

rom Hguation (2) in §V.3.

ich the direcirix is to the left of the
3} is developed from the figure.

(a) cbrix to the right.
(b; ctrix fo the left
(c irectrix to the right.

4, XW the conics of 3(a}, (b), (e), (f).

5 ind the polar cquation of the vonie with ¢ = 1, if the focus is at the
ole, and the directrix is perpendicular to the polar axis and passes

O through the point {4, r/3).

6. Find the equation of the conie for which e = 2, the foeus is at the pole,
and the directrix is the line p cos § = 5.

7. Reduce the following polar equations of conics to rectangular co-

ordinates:
2 6
(2) S - 2 .
s 1+ cos g © 1—23ensd
L] 10
b = ~ o=
(k) o L+2¢coze (@) P9 Ttons
8. Construct a figure and from it derive equation (5) of V.3.
9,

Obtain the equation of the conje with p = p cse 8 as directrix.
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V.4 THE PARABOLA IN RECTANGULAR CO-ORDI-
NATES

The parabola is a conic whose cccentricity is ¢ = 1, If the focus
is the point {#,0}, and the directrix is the line

(1) r+a=10
the equation is

Vi< ey &
2 ————— = 1. (See Fig. 49.) ¢
(2) |x T a| ee Hig «(’)

K+ae Q

\0 FIG. 49 —PARABOLA y* = 4ax.
If we Q@ﬁ\ of fractions and radicals, we have
@ x2—2a-x+a2+y2=x2+2ax+a2,
which redueces at once to
{4) ¥t = dox.
The straight line: through the focus and perpz-,ndi(:-ula.r to the
divcetrix is an axis of symmetry for any comic, and is ca.llfad the
principal axis. That this axis 13 an axig of symmetry in the

present curve is shown by the faet that for every x"a.h_m ‘?f x
there are two values of ¥, numerically equal but opposiie in sign.
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If a is positive there are no real values of y corresponding to
negative values of £. Hence, the curve lies entirely to the right of
the y-axis, and for all positive values of = there correspond real
values of . Henee, the curve is ualimited in extent in the
direction of the positive z-axis.

Obviously, if the value of @ were negative, the direction of ihe
eurve would be reversed. If the co-ordinates » and v were mi;e
changed, the y-axis would be the axis of symmetry or prin

axis of the curve, which would extend up or down aceor @to
the algebraic sign of a.

The point where a conic erosses its principal a)ﬂ‘;gg\known 4%
the vertex.

axis is called the latus rectum, and its is da, 8s can be
verified from the equation by settin

The chord passing through the focus an%&@ndu wular to the
a

EXAMPLE 1. Write the equation e parabhola with focus at
(—1,0) and directrix 2 = 1, Draw thdourve. Tt follows from §V.4 that
the desired equation ia @

the origin, and lies entj to the left of the y-axis (Fig. 50). The ends

= — 4z
The curve is symmetrics] gﬁe&pect to the w-axis, has ifs vertex af
S y

| LN I

FIG. 50.—EXAMPLE 1.
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1

of the lefus rectum are (—1,2), (—1,—2)., The points at which the
eurve cuts the line # = — 2 are at a distance 3 from F (in g parabola,
distance from focus = digtance from directrix)' and can be loeated
geometrically without computation. Additionsl points may be located
in a similar manner. T

EXAMPLE 2. Diraw the curve 22 = 2y. Determine the focﬁ;%_, directrix,
and ends of the lgtus rectum.

| &
The curve is a parabola, with the y-axis as prineipal axis (Fig, 51 g»

@G. 51, —EXAMPLE 2.

Sinee 42 = + 2 @curvc cxtends upward. The foeus is at a distance
a=Lt up e vertex, (0,14). The ends of the latus rectum are
(1,34, ( ~ The directrix is
N\
N\ 1
Q°

Additional points can be found as in Example 1.

EXERCISES

Hind the equation of the eonic for which

1. e=1, F = (—¢,0), directrix is x — @ = {.

2. ¢=1,F = (0,0), divectrix isy +a = 0.

3. e=1,F = {0,—a), directrixisy — e =0. _ _
I each of the following, plot the parabola, the foeus, lafus rectum, directrix,
and find the co-ordinales of the focus and of the ends of the Infus rectrum,
-and the equation of the dircetrix:
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4 i =6z, 7. 2% = By. 9. 2+ 8y =0,
5. = — 8z 1., _ 10, z2 =y
6. yi—z=0. 8. 42: +y =0

Plot the parabole with vertex at the origin and with

11. Facus at (5,0}

12. Length of lafus rectum, 16, Equation of latus rectum, y = 2.
13. Equation of lalus rectum, y = 2.

14. Equakion of directrix, y + 2 = 0.

15. (a} Show that the line z — 2y + 4 = 0 is tangent to the paraboly,
.y = 4z, and find the point of tangency. o
(b} A line joining the focus to a point on a conic is ealled the fo&
radius to the point in question. Show that the tangent i )
bisects the angle between the focal radius to the point of 4 Y
and the parallel to the axis of the eurve.

16. Find the points of intersection of the circle #* + 3? xl%l‘ and the
parabola ¢ = 3z,

17. Find the points of intersection of the purab ¥ = 8z and
= — 2\/ 2. *

N
V.5 EQUATION OF A CENTRAL gg}uc

We have seen that when ¢ = 1 th \c is a parabola. When
ez 1 it is called a central conic fQr)reasons that we shall see
presently. ¢

Let us write the equatio@f a conic section with the focus
at (ae,0) and the dir(-!cf)Qsax — a =0, where ¢ = 1, asin Fig. 52:

) \&&w e

> k-1

—a=To

FG. 52 —ELLIPSE.
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If we clear of fractions and square, the equation becomes,
(2) 22— 2aex + aé® + F = &t — 2aex o,

This equation may be reduced to the form

22 y?

3 — . —
3) a? T @21 — &%)
If the focus had been taken at (—ae, 0) and the dircefrix as

the linc ez + @ = 0, the equation of the conic would have been * <\
identical with ecuation (3). Therefore cvery central conic haq:b,
two foci and two directrices. The proof of this is left a

exercise [or the student.

If we write <~3”
4

1.

{4) b = ¢*(1 — ¢?) for ¢ less than one, "\
b = a*{e® — 1) for e greater than o‘béQ)
the equation of the conic becomes ‘\(b.
2 2

(50) S A 1,fm~e.@

a2 2

P
(5b) 52—52_1@01.
If the eccentricity is less than one, the curve is an ellipse. Thia
is a closed curve, of limiteddeXient, since there are no real points

of the curve for whic!(‘xz greater than a in absoclute value, or
for which y is greaf@®g than b in absolufe value.

Tf the eccentrigif/exceeds 1, the curve is a hyperbola, This
curve has redDP6inte only if = is greater than or equal to ¢ in
absolute \@e, and is unlimifed in extent.

The @3, in the preceding, is the principal axis of the curve.
Theyhxis, also an axis of symmefry, is called the secondary
‘minor axis for the ellipse, conjugate axis for the hyperbola).
the equation of the directrix were ey — a = 0, and the focus
were at (0,a6), the principal axis would be vertical, and the a?
would be the denominator of %%

EXAMPLE 1. The curve 22/9 4+ 32/16 = 1 is an ellipse with principal
axis vertical, since the larger denominator, 16, which is o? for the ellipse,
goes with the 42

EXAMPLE 2. The curve x3/9 — 32/16 = 1 is a hyperbola with prin-
cipal axis horizontal. (z*-term positive.)
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EXERCISES

I. Show the reduction from FEquation (1) to Eguation (‘3).

2. Using the focus (0,ae) and directrix ey — a = 0, derive the equation

2,

B + i 1.

3. In the following sight exercises, name the conic and the dircction of
the principal axis:

2
@ ¥ _1, te) 2% _1.
4 9 4 A
= 1 () 16z° + 0y® = 144, ‘\\
(b) 0 + 1z T (g} dat — Oy = —536‘ &g’
—xr P th} 252 + 22 = 225,
© fg+3=t () 1622 — 8y = — 4)

1 ) 2zt =38 .
(@ %+y==1. 82) 3z2_gygz§;‘3§

(1} 2z + 5y%E
4. DBy taking the foens at (—ee,0} and directrix e '{%}: 0, show that since
the resulting equation is the same as J:]quaihg 3}, every conic with

eccentricity not equal to 1 has two foel directrices.
5. (a} If b2 = g2(1 — ¢, find e in terms nd b.
(b T{0 =0p%et — 1), find & in te and b.

. 2be
rectum is —-
[

6. Reduece the following to the {ard form (5), und find e, the foci,

(c) Bhow that the length of the ]

directrices, and length of t. fry rectum:
() 253 | Oy? = 225, (d) 427 497 = 1.
{b} 9t — ]ﬁy2 =144, (e) — 22 = o,
T o) 3oy 9N (8 162 — 32 = — 25,
V.6 FORMS E CENTRAL CONICS

each has g t (the origin in the cases given in the preceding
section) hat any line through that point meets the curve
int ints equally distant from this particular point. Such
a is called a center of symmetry,
ésidcr the equation of the cllipse,
0 x2 y2

0 (1) atp=1
This curve euts the axes in the
for ¥ gives

@ y=22vVaa
il

From this we see that ¥ is real only if 22
is restricted to values betwec
show that y is restricted to v

The ellipse ‘;d ke hyperbola arve called central conics, since
t

points (+a,0), (0,-£3). Solving

is less than o2 Thus =
N ~¢ and +q. Similarly we can
alues between —b and +-b. Hence
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the ellipse is a finite closed curve, as in Fig. 53.

{0, b}

{-a,0}) LD lo,0)

&
O
10,-8} ( {&{‘%

FIG. 53.—CENTRAL CONIC, \\\Q

The standard equation of the hyperbola ditfc m the equation
of the ellipse in the sign of % The equn@( the hyperbola is

. x? .3;2
{3) il 1y ;
Henee &
£ y— oV —a

: N .
which shows that = f;%@ot be less than a in absolute value,
but that y is real f other values of @, no maiter how large.
The hyperbolaé vts of two branches, as shown in Fig. 54.

&

&
0‘0

Y

{~a,0} o e, 0 X

FIG. 54—CENTRAL CONIC.
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EXAMPLE 1. Bketch the graph of 10622 4+ 937 = 144,
Dividing through by 144, we have

xﬂ .y?

— 4+ =1,

9 + 16 .
The curve ig an ellipse {Fig. 55) with principal axis vertical (a? =’1%

N\
Y

N
\‘\% 55 —EXAMPLE 1.

under 32 agd terms positive). The foel are at a istance
ag = /g * +/7 from the center, which lies at the origin. They
are (0,4/FI»(0,—/7). The vertices are at (0,4), (0,—4). The curve
Cross z-axis at (3,0, (—30). The ends of the fafere recta are

{9/ 0 (=9/4/7), (9/4,—/T), (—9/4,—+/7). The directrices are
u&a/e = 4 18/+/7.
O

0 EXAMPLE 2. Sketch the graph of 9a? — 42 4 36 = 0.

Reduce to standard form {(franspose 36 and divide by —36).

The result is

®

— 4 ==1,

—4 9
Since one term is ne

gative, the curve is hyperbola, and sinee the posi-
tive term is the

Y-term, the principal axis is vertical. There is no
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polnt with an ordinate less than 3 in absolute value. For every value
of x there are two real values of y (Fig. 56). '

1o
Q}r
>

, '—BIJE. o

0
N
(0,~3) (2}‘,>

RG. EXAMPLE 2,

ae = /a2 B =13 'ilgr?foci are {0, = +/13). The ends of the
lutera recta are (:i:f-l/@:\/_lé). I'he directrices are y = £%/ /13-

a? EXERCISES
1. Sketch t @ owing conics, showing foci, latera recta, and directrices:
B {dy o* 43y = 8.

(a)@ 5—1. {e) 4ot — oyt = — 4

2
¢;\x_2_y_1 ® #-v -1
9 4 (@) —a2+09=9
9 6} Ozt — 4y = 36. (h) z*— 3y +9=0.
/ Find the cquation of the eonic for the given conditions:

@ ¢ F=@0),Fi= (=30
® o~k Fi= 08, F1= 09,
&) &= %, center (0,00, principal dinmeter = 20 along y-axiy.

(4} e=§, directrices s —4 =9,z +4 =10
2
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Given the ellipse 22/25 + y2/16 = 1, show that the line joining the end
of the latus rectum to the intersection of the principal axis with the
nearest directrix, is tangent to the curve. In what way might this
property help in sketehing the curve? (Hing: Solve the equations of the
line and the ellipse for their points of intersection, and show that they
coincide.)
Given the hyperbola 22/15 — 32/9 = 1, show that the line joining the
end of a latus rectum to the intersection of the principal axis with the
nearest direcirix, is tangent to the curve.
By using the equation of the genersl conie, #8/a2 + y2/b = 1, prove
that the property deseribed in Exercises 3 and 4 is general. o \
Find the poinfs of intersection of the following pairs of conies; ’\
x® ap

{a) I+'§=1=?F=QT:' 0&

b xi yz_iyz xﬂ_l ®

L R e S {'35
&

Y
v 2 — _— =
{e) 2 +y 13,25+9 L . K
Show that the sum of the focal rudii drawn to puint {(3,12/5) on the
ellipse 2%/25 4 42/ = 1 equals the length e principal diameter.
Show that the locus of a point such tha sum of its distances from
two fixed points is a constant grea D the distance between the
fixed points is an ellipse with thes oints as foci. (Hint: Let the
two points be (a0}, (-ae,0) and thedonstant = 2a.)
Show that the locus of a pnint‘g Yifference of whose distances from
t

two fixed points is & constan han the distance between the fixed
points, is a hyperbola. with two points as foei.

N
O
«©
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SUMMARY OF CHAPTER V

Equation of a conic section

Rectangular Ax* + 2Hxy+ By* + 2Gx + 2Fy+ €C=0

e
Polar o= iy
1+ ecost
Parabola e=1, §\
yi = 4ax xt = day &Q
Distance, vertex to focus, a “3’9
Distance, focus to directrix, p=2a (b
Latus rectum, length, 2p = 4a v()ﬁ
Central conics el (§
. x? y2
Ellipse e<1,—+ xis 1. Stigdard Form
a- - .

a-= senﬁmajo@ eter
b = semimi iameter
FogiN-tae, 0)
o
Hyperbola é&\ ©_ v = =1
‘az b

@E semitransverse diameter

(&. b — semiconjugate diameter
\O Foci (Ltae, 0)
O

00



CHAPTER

V]

TRANSFORMATION OF AXES (&

Vi1 TRANSLATION OF AXES

~ We recall that in the study of the circle, the equation of the
cirele with the center at the origin had a simupler form than one
with the center at {a,). Tf, in working with a circle, we were
able to change to a set of co-ordinate axes with the origin at

the center of the curve, we might find a deeided advantage from
the algebraic point of view.
78
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For example, consider the circle

(1) a4 gt — dx — by — 12 = 0.
or
(2) (x— 24 (y — 3)* = 25.

Now imagine a new pair of axes, paralle! to the z- and y-axes,

oy &

o

$

F 7—CHANGE OF AXES.
but passing tl}g@ the point (2,3). As Fig. 57 shows,

@) \{,‘} =z 2

”\ y’ =y - 3!

@0 z=gz'+ 2,
y=¥+3

When we substitute in Equation (2), we get

(5) z? 4 y? = 25,

o
(

This transformation to a new set of axes parallel to the original
axcs, but through a new origin, has for its purpose, as in this
example, the reduction of an equation to a simpler form, which
will make the analysis of the locus easier.
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In general, & translation of axes to a new origin (zg,y0) 18 effected
(see Fig. 58) by the substitution
{6) =+ Ty
¥=9 + Yo
Y

20
5 \§\

&

o “,},o X
| x‘g"
Q

r\

PG\ 58 -—CHAMNGE OF AXES.

b EXERCISES
&

axes to the new origin (4,2), and find the new co-
the poinis (1,2), (0,—38), (—4,5), (- 1,8), (x)-
rterred to axes through the point {—1,3), the new co-ordinates
points are (3,4), (6,—1), (0,5), (0,0). What were their original
ywrdinates?

Y translating to the point (—1,0) as a new origin, find the new
equations of the straight lines

00 (8} 3z+dy—-5-=0, &) y =10z + 6,
4

(c) az+by+c=0.
. Perform the translation to the indicated point as new origin, simplify
the equation and identify the eurve:
fa) (z— 12442 =4, (1,0).
(D) D +yfrde—2y—4=0, (-2,1).

(e) (y—1)=4(z—4), 4,1).

(d) 2462 -8y 1383 =0, (-8,3)
z+3) (y—2r

€& =+ =1 (~3,2).

) 32+ +12c+6y —3=0, (-2,-3),

12 (y+3r
(g} ——4—- - "“32—' =1, (—1,—3)-
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5. Determine the translation of axes that will rednce the following equa-
tions either to the form #* = 4az or to ¥ = day (try completing

BQUArES):
(a) u* — 6244y 4 10 =0, {c) =z — Gz 10y —41 =0
h)y ##+4x—3y—6=0. () oz + 29z 4+ 2fy+c=0

6. Defermine the translation that will reduce the following equations
to the symmetric form (without first degree terms}:
(a) 4dx®4 9523 Bx—32=10. (c) 3x?~y*—6z—2y—10=0
() 4zt 42— 6y +5=0. {d) 7a* — Dy 4+ 28r + 91 =0,
{e) arZ+bpr+2x+2y+e=0

&

In the following exercises, find the equation of the conic, sketch ande
detormine the usual important points and lines. (Foei, directrices, ete.}
7. Vertex (4,1), focus (5,1), ¢ = 1. g
8. ¢ =3/5, conter (2,—1), principal diameter parallel to z-axis @\0
lenpth 10, S
9, Principal dismeter = 6, foci (6,0), (—2,0). {’33
10. Vertex (4,1), focus (3,1), cecentricity . ﬂ(b

Il. & = 3/4, center (0,5), one directrix 3y — 31 = 0. ”Q

12. Focus {~8,5), directrixy = 1, e = 1. \

13. e = +/3, principal axis z + 2 = 0, center (-—2,%&\Qincipal diameter 2.

14, Vertex (h,k), e = 1, axis vertical, length of Q reclum da, curve ex-
tends downward. )

15. Parabola, vertex (&%), axis horizont. urve opens to left, lafus
recium = 4a.

16, e<1, center (h,k}, semidiameters

17. Az in 18, but with principal ax

18, (a) e>1, center (AK), seid

vertical.

{b) Asin (a) but with@:ip&l axis horizontal.

VL2 FINDING JIE\CENTER OF A CONIC

The center of A@c is & ecnter of symmetry. That is to say,
any straight 1 rough the center meets the conic in two points
that are ¢ y distant from the center. (See £,8in Fig. 59.)

*
rincipal axis vertical.

rizontal.
ajor diameter = o, principal axia

The general cquation of the second degree in z and y is

(@ ax? 4+ 2hzy + byt + 290+ 2fy + e = 0.

Q'd we have seen that certain forms of this equation have
conics for their loci.

Tf the eurve is symmetrical with respect to the origin, 1.e., if the
center of the curve lies at the origin, changing the signs of both
z and y will not alter the equation. That is, the cquation

(2) ax? 4 2hay+ by — 292 — 2fy+ =0

must be identical with Equation (1). But this can only happen
if the coefficients of the first-degree terms are zero.
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Laga%) &g

- \‘"
Flféb

Let us suppose that the cen@of Curve (1) is the point {o,y4q).
Transforming to this poi a new origin,

(3 /Q z =z 4 o,
y=9 + .
Bubstituting 1&1&1‘0&1;1011 (1), we have

4 & o) 4 2h(x" + T0)(y' + yo) + by’ + :9'0)2
+ 290"+ 7o) + 2y + yo) + ¢ =

¢ cxpand and collect terms we obtain

@ &’ + 2ha'y + by’ + 22 (axo+ hyo+ ¢) + 2y (hxo + by +f)
O + 2z (Mo*!-hyo-l-g)*i"yo(h$u+b?}u+ﬁ+(f}'$o+fyﬂ+c)

Now if the new origin is the center of the curve, the first degree
terms in 2’ and g’ are missing. That is to say,
{(6) axy+ hyy+ g = 0,

by + by + f = 0.

If we assume that

ab — ks Q,
these two equations may be solved for the values of To, Yo
Then if these values arc substituted in Equation {(5), we have
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(7 ax'? + 2hz'y’ -+ by? + € = 0, where
0 - abe — af?+ 2fgh — ch? — by
ab — B

Hence 2 necessary condition that (2) may represent a central
conie, that iz, an cllipse or hyperbola, is ab — A% 0. We shall
see later that under eertain conditions {2) may be transformed
into one of the standard forms discussed n Chapter V.

EXAMPLE. Find the center of the conic O&Q
B2 — Sxy + 2+ 2x+ 6y + 13 =0, “33

and find the equation referred to this point as origin.

\@
Comparing with Equation (1) we sce that \}

a=3 h=—4b=1¢= 1f@>\ 13.

Then the two equations determining the ¢ §
3z — 4yt 0

—dzy + y@

From these, on solving, we ﬁn@{}= Lyo=1
Then ')

= grod B = 1.1+ 31413 = I7.
The new equatwrz i@eforc is

— Sy + ¥+ 17 = 0.
\0

Vi3 ABOLA
1 @ ing to find the center of the conic as in §VI.2, it should

h
ha;pcn that ab — k2 = “

hb
center for the conic. But the eonic without a center is the
parabola. Hence a necessary eondition that the equation

= 0, we should not have any finite

{1 ax? 4 2hay + b+ g+ 2fy+c=0
represents a parabola is that the sceond-degree terms,
(2) aq® + 2hay + by,

form a perfect square.
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EXAMPLE, Tind the center of 32 — day + 4y7 — 8z — 4y + 8=0,

The equations for the determination of the center of the conic are

g-2y—4=0,
2z 44y —-2=10.

Their graphs are parallel lines, hence there is no center.

The second-degree terms form a perfect square, and it may be shown
that the eurve is s parabola, ’\<\

V1.4 DEGENERATE CONICS OQQ
It might happen that ¢ = 0in (7) of VL3, that is, &‘%’
a kg
abe + 2fgh — af* — eh? — bg* = |h fe <D
g
(1} Then ax't + 2hx'y’ + by? i@'
But the left member of this equatio Qbe broken up into two

linear factors, as follows:

aw’® + 2ha'y’ + by'? = ~[u? uha'y + By — (B2 — ab)y'

QDA;;H—J

NN laz’ + [ — V' I* — ably']
b faz’ + (h + Vi — ab)ly’] = O

The origir équation represents a locus congisting of the two
straight : '

a(z — zo) + (h+ VE — ab)(y — yo) = 0,

_nd the locus is said to be a degencerate conie. Both of these lines

passlthrough the center (zo,y0). If A2 — ab < 0, so that the lines
are Imaginary, the point (zyys) is the only point with real
(30—01:dinates lying on cither line. SBome people call such a conie
2 point conic. We can then say:

«.§<\\ ale — zo) + (h — \/hf — ab){y ~ yo) = 0,
O

The condition that the locus of
ax* + 2hxy+ by + 2gx 4 2fy +c=0

consists of two straight lines, or is a degenerate conic, is that

»
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la h g
the determinant, 12 b f| = 0.
gf ¢
EXAMPLE. Discuss the cquation 2z + 2wy — 2y* — 10z + 10 = 0.

To find the center, we solve

Yrg+ to— B=0,
J:u—-gquO,

and find (2,1). ’\Q\
The redueed equation is Oﬂg
2 1-5 \
24"t | o'y’ — 2yt =0, sinec | 1-2 0= 0. ﬂ.%
5 010 (O

QP

The locus (see Fig. 60) consists of the two straight lines
95’ + (1 - Vo =0,
2’ + (L+ /3 =0,

or, in the vriginal co-ordinates,

24 (1-+3y—5++V5=0
9+ (L+vBu—-5-+vVE=0.
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EXERCISES

1. Show the steps in deriving Equation (5) of V1.2,

3. Show all the steps in deriving (7) and (8} of VL2,
‘In Exercises 3-8, find the center of the conic, test for degencracy, and write
the equation after translating to the eenter as origin.

3. 4o+ 107y + 42 +15 =0, 4 do?+ 102y + 47 = 0.

5. x’—41:y+5y2-—8.1:+6y+43 =0,

6. x? —dzy + 5yt — Be 4 Oy 41 =1,
4t —Toy + 3t ~2x+ 4y —9 =0
gt — bey — By — & + 3y = 0. .g\
Show that the following conics are paraboiug, and thag (b} and (o) B¢
degenerste (consish of two parallel straight lines). Tind the equebions
of these straight lines.
() o+ 2zy+ 3y + Lixr— 13y +60=0. (}
b B+2zy+yrtzt+y—2=10 A\
ey & ddwy+ 42— 6z — 12y + 9 =0 \
In Exerciscs 10-186, find the center, transform the r_:rigin{@m center, and
identify the curve. "\QZ
10, 224y - Ne+dy+22=0. 14 99 — 28K Y2z - 36 =0.

11. =22+ 2 —4p+2y-12=0. 15 1:332& 0z + 4y +39 =0,

ewH

12, x2 4142 — 10244y +20=0. 16, 2° 2z -5 =0
13, 82t 4+ 4t - 18x -8y 419 =0,

P
V15 ASYMPTOTES .

Let us consider the problem Q&)ﬁnding points on the curve whose
equation is )

(1) @— Bry — 3y = 4.

Perhaps as easy% hod as any is to choose an arbitrary line
through the ogigin}

(@ <O y = ms,
substi in Fquation (1), and solve for %, then for y.
(3{\\ 3 — 8m — 3mHa? = 4.

+32 +2

ﬁ% __ ] _ £2
O N3 _8m 3w V@E+md_am

By inserting values for m, the values for x and y are easily
computed. Some general considerations may shorten the labor.

¥or values of m hetween —3 and 4-1/3, both factors under the
radical are positive, and hence we find real points on the curve.
For values of m outside of this range, one factor will be positive,
the other negative, and therefore the points will be impossible
to plot, since they have imaginary co-ordinates.
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We note that as m comes close to 1/3, or to —3, the values of =
are very large. The corresponding lines for m = 1/3 and -3,

(5) 3z+y=0,
z— 3y =0,

are called asymptotes of the curve (Fig. 61).

‘ &
)
O
—~ fb&
——b\\‘c — ‘v %
‘--"‘ .\\" v
| S
\ ».
O
FIG. g@ YMPTOTES OF A HYPERBOLA.
117 .',ﬂ e T
A@g} +:1.32 ~100 = .71
o950 =1.03 - 75 x4
3 925 4 83 — 50 = 80
Q —200 = .76 — 25 = 91
175 T T2 —0.00  +1.16
150 =+ .70 25 143
—125 = 69 30 35

The asymptotes of a hyperb

ola are of particular interest, since

they gerve as guide lines in gketehing the curve.

It is interesting b
Equations (5} together, we have the

o see that if we multiply the left members of
left, member of Eqguation (1),
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It can be shown, in general, that if the center of the conic lies
at the origin, one may find the agymptotes by factoring the
second-degree terms and sctting each factor equal to zero.
The reasoning follows very closcly the reasoning in the fore-
going illustrative example, (Sec Exercise 1.)

Thus, to find the asymptotes of the curve

(&) ax? + 2hay + byt + ¢ =0, .6\
we set ' - ﬁg’
(7 ax? + 2hay + by = 0, Q

Q

factor, and set each factor equal to zero,

Bince an ellipse is a finite closed eurve, s@wﬂl be no real
azymptotes. Hence for an ellipse \>

(4
(8) 1 — ab <O\
&

If the curve is a hyperbola, t%asymptotes are real, and, for

that ease, &

{9) — ab > 0.

As we have ahead@en that for a parabola is

(10) a;\ R —ab=0.

Thus we e a very convenient means of determining the
iype o ¢ without the labor of reducing the nquatlon to
sta form. If the locus of the general equation is not &

{é&emte conie and if

0{:} 1) h* — ab > 0, the curve is a hyperbola.

h* — ab = 0, the curve is a parabola.
Bt — ab < 0, the curve is an ellipsc.

EXAMPLE 1, Sketch the ourve

92 — 442 = 38,
The curve is a hyperbola (Fig, 62}, since

R —ah =0~ 9(-4) = 36 >0,
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\

FIG. 62.—EX £ 1.
Its asymptotes are the lines 3= L0, and 3z — 2y = 0.
Tis vertices are the points { {—2,0).

EXAMPLE 2. Skct-ub‘h@c rve xy = 1. The eurve iz symmetrical
with Tespeet to theort N and the line y = =. Tis asymptotes are the

Tinese =0, y=0 points (1,1); {—1,—1), are points on the curve.
(Fig. 63.)

FIG. 63—EXAMPLE 2,
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EXERCISES

1. Qiven the conic axf + 2hzy + by + ¢ = 0.

{a) Find the iniersections with the line y =
{b) Show that x and ¥ are no longer finite when

0 = -

{c) Show that the lines wrrebpondmg 1o these values of m are
{—h+ 'kt —ablx — by =0,

(—h— i~ ablx — by = 0. I\
{d) Bhow that the product of the left members of these equam&
leads to

blax® + 2hxy + bi2) = 0,
and hence that to find the asymptotes we equate bcwnd
degree lerms 4o zero «%

In Ezercises 2-7, identily the given curve, find the e@é‘.
asymptotes, and skefch-them if they are real.

. 92f ~ 37— 36 = 0. @_374 — 3z,
x* xz
o5 -y =1 (b\.> Y=g ¥= g

i
iohs of the

4

24+ 42— 16 = 0. Q
Ber — oy — afh? = 0, 60
B — by -+t -9 =0 Ans,z —y =1, 5z —y =10
St —dxy + 4+ 2=0.

Prove that the asymptotes q@c equilateral hyperbola, 22 — 3?2 = af
are perpendicular.

In the fellowing exercises, fin®Nhe center of the curve, translate to the
center as u new origin, idepdily the eurve, find the equations of the asymp-

*

IR

totes, and transiate back e original co-ordinate system,
9 wy+ ¥+ 2z -‘g
10, 2 — 2y — y+ 1 = G Ans. Center, (2 ) hyperbola,
gz» o (s Vi) -0
O x+y\/§—(2-—\/2)-—0

1L % 22y + 27 — 8y + 1 = 0.

O

V9I6 ROTATION OF AXES

If there is no zy-term in the equation of a conic, the methods
previously diseussed enable us to make a fairly complete analysis
of the curve. Any cquation that containg an zy-term can be re-
duced to the other form by a rolation of axes.

-Buppose a new set of axes with the same origin is found by
rotating the old axes through an angle ¢ (Fig. 64). Then the
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FIG. 64.—ROTATION Q&AXES.
equation of the new y-axis is §
yRind =0,

(1) z cog
and the equation of the n@m-axis is
(2) gﬁnﬁ—i—ywsB:{].

The new =z is the nee of the point (z,y) from the line (1),
and the new %m distance of (z,y) from the lne (2}. There-

fore, by ¢ the properties of the normal form of the
straight li get the equations of the {ransformation, '
(8} g = zcosf+ ysinb,

O ' y’-———xsin&—l—ycosﬂ,
or, upon solving for = and ¥,
(4) =g cosf—y sin 6

y = ' sin 8+ ¥ cos 6.
Now if we apply this transformation to the equation
(5) L Shaoy + by 2e+ 2y e =0
the new zy-term has the coefficient:
(6) —a-2sin § cos 8 + 2h(cos? 8 — sin’d) + b-2sin # cos B.
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If we set this equal to zero and apply the formulas of trigonom-
etry, we find -

tan 26¢ 2k
(N an 20 = b

From this, it is easy to determine cos 26, and, by the use of the
formulas

(8) sind ,‘/ 1 — cos 20 14 cos % \Q\
1 = . . \

9 eos = 5 &

the equations of the transformation can be f()und.ﬁ%.
\S

EXAMPLE. By a rotation of axes, eliminatev{@w “term from the
equation 8z® + 24wy — 432 — 156 = 0, \§\

4

FIG. &5.

24
tan 20 = "~ cos 20 = 1,
7 25

. 3
Slnﬂz;,c()sez'
D

e
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ilence &= %x’ - §y", ¥ = %-.r.’ + —y.
5 5 3

Substituting in the equation, we have

3 a, L 24
Z (162 — 24’y + W) + STaze 4 Ty — 1298
25 23

4
—2—_(9.?;’E + 2dz'y’ + 16y"%)— 156 = 0.
5

When we ceollect terms, this beeomes s\
1227 — 18y — 156 = 0. Oﬂg

[f the conic is a central (:onic; we nsually translate the x%’to

the conter as a new origin before rotating the axcs. Ik Curve

is a parabola, we procecd to rotate the axes at on._.\

Qince rotation of axes does not change the fq&)f 4 curve, we
are now in posilion to verify our assump@u hat the general
equation of the second degree in x and / cither a eonic or &
degenerate conie. It 1s always possg@ s rernove the zy-term
and the resulting equation may %1 be reduced to one of the
standard forms of & eonie or to generate form.

$§RC1SES

1. What property of th el form of the straight line is used in
deriving the equati rotation of axes?

2. TDerive Bquationg¥d) Trow Equations (3).

3. Bhow the deri of cos 28 from tan 26.
Fliminate the xy , identify the conie, and sketeh on the new set of

axes:
4. 13a* @-}- 8yt — B8 =0. 5. 2"+ Bay + 22 — 18 =10.
6. FlimtaMe the sy-term, and show that Bzt -+ Szy +y¢ =0 i & de-
e ¢llipse.
o\ standard form and identify the conic:
et — Boy + 3y + o+ 1ly — 1=0

2x3—4xy+5y“+8z-§—6y+41 =0,
9, Sz8+ 8zy — 8y + 10z +10=0.
10, Reduce to standard form, draw the sets of axes, und, on the laat,

sketeh the conie

22:2—-4xy—y2-—6y+15=0.
Reduce to standard form:
11, 4t — 127y + % 4 3z + 29 — 13 = 0.
12, - 22 4+ 4y 4 4y ~ 6z + By =0.
13. x‘—2zy+y2-—4x—-4y+8 = 0.
14, Reduce to standard form znd sketch the curve
9z — 24zy + 167 — 183 — 101y + 19 = 0.
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o4
REVIEW
1. On the same set of co-ordinate axes, construct the threc lines
(2) with slope = — !4, passing through {1,4),

(b) with z-intercept = 3/2, y-intercept = — 3,

(¢} with g — 35, w = arc tan (-2).

TFind the equations of the lines of IExercise 1, and the co-ordinates of
the vertices of the triungle formed by them.

Show that for the triangle of Exercises I and 2, the eguation of t
caeribed circle, tangent to (b) and to the extensions of (a) and (e@
fex — 127 4+ (y — 6)2 = 45, Draw the cirele, \
Without first drawing, determine the relative posilions of M@elcs
2% + 4% =16, and 2 + 32 — 2z — 16y + 61 = 0. Q

Draw the following eireles and show that they have one %!i’ in com-
momn:

22 3 y? - 10z — 14y + 54 = 0, K
&

4y — dr—ITy4+40 =0,

-Gy +8 =0
A point moves o that its distance from th it (—2,3) iz always
1 less than its distance from the line z — . Obtain the equation

of the locus, identily, and sketch.

Show that the equation of the locus 13 whose distance from the
point (3,0} is twice its distance from ¥igisdu? — gyt 4 G — 9 =0,
ldentify and sketch, showing the j tant points and lines.

Find the center of the conice 18.§$ Ddzy 4 23y + 36z — 10y + 1 =0,
Transform to the ecntor as origin, eliminate the ry-term, and

reduee to standard form. @

&
&
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SUMMARY OF CHAPTER VI

Translation of axes
fx = x— X {x=x’+xg
¥ =v— ¥ y=v -+

Center of conic ax® + 2hxy + by’ + 29x + 2fy+ ¢ =0

ax;+ hyo+g=0 .
he,+ byo+f =0 Oﬁg
where ah — 2= 0 {Q{
Degenerate conic ,\(‘)(b
'|a hgl \§\
hb fl =0
4

lgf ¢ &0
Asymptotes of hyperbola  ax’ —l—&y +byt+ce=0
ax® + 2hx, *n&yQ =0

Rotation of axes .'\<\
fx—xcosﬁ x=1xcosd—y sind
y——xs:r%+ycosﬂ y=x'sinf+y cosd

To ehmmat@erm from general conic

1— cos 28 1+ cos 26
tan 29&—? sing=A/ ~— - cost=A T
a —

00




CHAPTER

VI

TANGENTS TO CONICS &

Vi1 INTRODUCY{@VS—TANGENT WITH GIVEN SLOPE

A straight lincsmay cut a conie in two distinet points. The co-
ordinates of4he” points of intcrsection are the simultancous
solutions e cquations of the line and the conic.

A StI{@l line is said to be tangent to a conic if the line’s two
poi of intersection with the conic coineide. The condition
@ﬁs is, as we have scen in the ease of the circle, that when
0 Le variable is eliminated hetwcen the equations of line and

curve, the diseriminant of the resulting quadratic equation
vanishes.

The determination of tangents to a curve from an outside

point, or of tangents having a given slope, depends upon the
application of this condition.

EXAMPLE 1. Deiermine the fangents to the curve 22 4+ 232 — 4z = 0
that pass through the point (6,4/2).

96
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The line with slope m, passing through (6,4/2), is
y = mx — bm + V2.
.Substituting in the equation of the eonie and collecting terms, we have
(1 4 2m?)a? — (24m? — 4m/2 + o + (72m* — 24m/2 + 4) = 0.

Finding the digeriminant, ¥ — 4ac, and removing a common numerical
factor, we have the equation

—3m? + 2m4/2 = 0. A\

FlG.@/QEXAMPLE 1.

Whenee the necessa ﬁ@e& are 0 and 24~/2. The desired tangents
{Fig. &) are rb

¥ :@%‘ and 3y — 3v/2 = 204/2 — 12¢/2.

EXAMPL&@ Determine the tangent to the curve 2—dy—4=0
that haashd slope 2.

@Qmation of any straight line having the slope 2 is
y = 22+ b.
Substituting this value for y in the equation of the conic we have
gt 8z —4b—4=10.
This equation will have equal roots provided the discriminant vanishes,
i.e, if

164 4b+4=0,
b=—35.
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Hense the equation of the desired tangent (Fig. 67) is

1.
2,

'y=23:—0. -

7

/

FIG. 67.—BXRAMPLE 2.
CISES
Determine the equations ofhe tangents to each of the following through
the indieated pomfss
4yt = 25, 3. ¥y =8 -7, {~1,—1})
4. bt — 2yt = 18, (1,—4).
5. 4 — 3z — 6y + 21 =0, (1,3).

922 + 16y?
Determine &

to each of the following with the indicated slopes.

16 slope = — 3

X@y = 8z + 4y ~ 0, slope = 2.
8

Q%

12,

13.

14,

]

+ 24z = 0, slope = — 3,
922 + 16y* = 144, slope = —

36z — 2542 — 900, slope = 2.
8how that the equation of the tangent to the parabola 3* = 4pr with
slopemlsy—-mz—l— L

—

e

Show that the equatmns of the tangents to the circle &2 + 32 =1r*
with slopo marey = mr = rvmE L 1.

Bhow that the equations of the tangents to the elhpse = + b2 = 1 with
slope m are y = mx = Vaimi 5 b + B2,

3 T
Bhow that the equations of the tangents to the hyperbola % - ;‘:, =1
s

with slope m are y = mz = Vafm? — bt
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15. Determine the equations of the tangents to the circle #° -+ y* = 100
that are parallel to the line 4z — 3y = 20.

16. Find the equation of the tangent o the parabola a* = 12y that is
perpendicular to the line z — 3y +2 = 0.
17. Prove that if a real tangent can be drawn to the parabola
y =az? + br + c{a>0)
through the point (A&}, then
ah? + My f ek
18. Show that the line

Feosw S+ ysinw—p=0 ’<\
is taungent to the ellipse ,\
LN Q
? + B L &

if 2 = af cost w + B sin® e, N
P (3’
ViLe TANGENT TO A CONIC AT A Polg\"&
N

Consider the general conie
(1) axt -+ 2hxy + by + 2px + ny‘\ = 0.
If the point (21,71) lies on this curve, &Q

{2) ard+ 2hai + by13+§&xp 2fm+e=10.
Any straight line through thi&? int gencrully meets the curve

&
&

FIG. 68.—TANGENT JO A CONIC
in two points, the point (z1y1) and another point (Fig. 68).
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‘ To find the second point, we take the equation of the straight
line,
3) ¥~ y1 = mlz ~ 1),

simultaneously with the equation of the conic, (1), and solve,

Subtracting Equation (2) from Equation (1), we have

(4)  a(x? — o2 + 2hizy — ) + by — w®) + 20(x — 1)
+2fly—p) =0 Q

If we eliminate y from Equations (3) and (4), the regal{img form
ean be factored into {b\

S\
(6) (x — a1){ox + 2hmzx + bm’z + ax + thl@—l— 2fm — bnv'
- by} =

If the line (3) i1s tangent, the secon @or must vamnish when 1,
is substituted in place of z, since angent meets the curve
in two coinecident points. Henc

(6) Qax: + hys + 2 «S}le + by, + 2f) = 0.
Since m must satisw% equation if the line (3} is to be a

tangent, the slope ofhde tangeni must be

K ari+ by 1 ¢
7 M= — —————
@ b o hay byt f
The oquagg of the tangent is then,
(8) X@ +hpnt gz —x) + ot b+ Ny — ) = 0.

I@c expand and rearrange terius, we get the equation

0 9} e + hrys + haw + by + gz + g + Sy + fin
— (0-1312 -+ 2hx1-y1 + by12 <+ 29x1 + 2f‘yl) = 0.

From Equation (2), it i3 readily seen that the second line in
Equation (9) is cqual to ¢, and hence that the tangent at the
point (2y,41) on the conic is,

(10) azz: 4 heyy + ke + byys + g2+ g+ fy+ f+ ¢ = 0.
This equation is sometimes written in the form

(11} (azs + hy + @)z + (hay + by + Ny + (g + fn + ¢) = 0.



TANGENTS TO CONICS 101

EXAMPLE., TFind the equation of the tangent to the curve
xt — dey — B2+ 6z + 6y — @ = 0, af the point (2,1).

ga=1,h=—2b=—5¢g=87=8c¢c=-9
The desired tangent (Fig. 69) is

2-2+3Ne4(-4-5+3y+H+3-9=0,
or
x— 3y = (.

.0
U &

6\
‘<\O
e
O
\§$> FIG. 69.
O

: EXERCISES
1. Show how Equation (5) is developed from (4).

Show how Equation (6} is found.
{c) Express, in your own words, & method by which Equation (10}
can be remembered easily when compared with Equation (1).

ahg
(d) Compare Equation (11) with the determinant ;h b j|, and state a
gl ¢
method of writing the equation of the tangenfl at a point of the
curve.
The normai to & curve is the line perpendicular to the tangent at the peint
of pontact. Hence its slope is minus the reciproeal of the tangent's slope.
Find the equations of the tangent and normal to each of the following
curves at the indieated points.
2. 24 2oy tyt—z+2¢—12=0, (1,2).
3. 46y —4y+8+10=10, {—3,0}.
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L 9P tayf+12+y—-65=0, (-14)

5.y —dy+2r—-1=90, (2,3).
6. 4zt -y +qy—x+15=0, {0,5).
7. g* -+ Bg 4+ 10y — 10 =0, {—6,1}.

8, 0x 3 4y — 18z + 16y — 11 =0, {1,1).
Find the equations of the tangent and normal at the point {@1,%1) on the
given curve in each of the followiag.

9, 24y =rh

el y’_ *
w S+i-t . \<\

2 a
12, ¢ = daz.

13. Given the parsbola 3* = daz. Prove,

y -
{a) the tangents st the cnds of the latus rectum ar, @endicular to
each other.
{b) the tangent at one end of the latus redum@crpendicular from
the focus to this tangent, and the y-axis concurrent.
{¢) the tangent at any point of the parab é’ﬁhe perpendicular from
the foeus to this fangent, an thg\ gent at the vortex are

concurrent. )
14. Prove that the tangent at a point (@ on the parabola y* = daz is
the biscetor of the angle between, the' focal radius to the point, and
the Tinie through the point parafeb fo the axis of the curve.

{Tt may be of sume interest to hat the property of the parabola de-
veloped in Excreise 14 iv ulilizeg\lYP the construction of the reflecting tele-
scope, Which reflects parallel b rays through a fixed point, the focus of
the mirror. Tt is also used jg¥gverse fashion in the construction of powerful
searchlights.)

15. (a) Plot the gliksd /25 + 42/16 = 1, its foci Iy and Fy, and the
point P(A%“ .
(b} Find the eduations of the tangent and normal at P,
{c) Fin quations of the foeal radii, /P, FoF.
{d) e equation of the bisector of angle FiPF .
{e) pare with the equations of tangent and normal.

16. P hiat the tangent snd normal at any point on the ellipse
ﬁt*F y2/b? = 1, biseot the angles formed by the focal radii to the
anit. .
QY SUMMARY OF CHAPTER VI

Tangent to conic with slops m
Substitute y — mx + k. Set discriminant — 0. Solve for &
Tangent at point (x.,41) on curve

ax®+ 2hxy + by* 4 29x+ 2fy + € =0
- ama - by + g+ by + 9+ ) Sy + y) e =0



CHAPTEER

CURVE TRACING IN
POLAR CO-ORDINATES

O

§

VIil.1  CIRCLE AND STRAIGHT LINE ﬂ(bﬁ

Tor the study of relationships that involve the xEénometric
functions, we find that polar co-ordinates arg h more ¢on-
venient than the rectangular. Henee it i3 wet{%r us to be able
to graph equations in polar as well as inre ular co-ordinates.

O

As we have seen in an eatlier cha;@l\’.l), the equation

(1) P =

represents a circle of radius .’Mt‘n center at the pole. Also that
the equation ¢ = « rc@&@te a straight line through the pole.

Any other straigh X has a polar equation ($111.2)

(2) p = psec(? — a).
O"&

Any eir ]Q\passing shrough the pole has an equation of form
(3} {:} o = 2a cos(f — a). (§IV.1)

QQ CONICS

We reeall that the equation of a conie with focus at the pole and
directrix perpendicular to the polar axis is

e
T lxecost

(1) p  (§V.3)

the sign in the denominator being + or — sccording as the:
directrix is to the right or left of the pole.

101

.\<\



104 CURVE TRACING IN POLAR CO-ORDINATES

EXERCISES
Identify and draw the following curves.
1. p=23. 6. p=2¢reco
2. 8= E 7. p=cscé )
3 p=0. 8 p=4cos (8 — ﬁ)
4 7 9, p=sinég
-4 10. p = 8 sin (# + are tan 1),

x *
5 » =2sec(8——6)- ’\<\
11. Write the polar equations of the conies with the following da&
fa) e=1,p=3 (b) e=i,p=5. {c) e=g-,.%§}

Reduce the following equations to standard form, identifyb sketch.

5 12
12. 5 = (1 + cos 8) 4. p=3 %v§o§‘8v
4
13. — o= W\
15. o \b.j cos @

Po 0 Tcos e {é
VIiL3 THE CISSOID \®)
Frequently the polar equation @fes a valuable suggestion for
drawing a eurve, as is the cas h the cissoid (Fig. 700, which
was first studied in the § pt to “double the cube.” Its
equation in rectangular formh is

M > v
1=,
$<\ Y=z T
. In polar ¢ nates the equation is obtained by substituting
T=p¢ ¥ = p 8in ¢ in (1). The resulting equation may be

redu& ;
O

OQhen, in order to find points on the curve, we have merely to
draw the straight line,

p=asccd— acos b

(3) p= asoc b,
and the circle,
4) p=acosh,

&nd subtract vectors. (Fig. 70: OP = OL - 0C, PL = 0C.)
This can be done much more rapidly and accurately than by
substituting values and vomputing the co-ordinates of the points.
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EIG. 70—THE CISSOID.

O

4 THE LIMAGON

Like the cissoid, the equation of the limagon (Fig. 71), of
which the cardioid is a special case, suggests a method of
_drawing,

(1) p=acosf+ b

We have merely to draw the circle,

(2) p = & cosé,
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and measure a distance b in the positive dircetion along the
radius vector from the point on the circle. When b = @, the

curve 18 the cardioid,

» el
é‘\‘\HG. 71.—THE LIMACON,

EXERCISES
I. Na 1 sketeh the curve

XQ p=2zechd —2conp,
2<\ struet the cissoid

p=4sce -4 cos g,
Q (a) Sketch the curve

{} p=23ze08 4+ 2 cuz0,
0 (b} How does the drawing of 3(2) compare with that of Exercise 17
Name and trace the | ollowing curvea.

4 p=4dcozp]. 8 p=acosd+ 2
5 p=2cos6+ 3 9. p =14 cos0.
G, P =acosd+q. 0, p=1-cosa.
7. p——-amsﬂ-{-i& 11, p=dcosp— 1.

12, Bketeh p = ¢ sce 8 +b. (Conchoid of Nicomedes.)
letting (a) b= a, (b) b= g’ (C) b= 350"
13. Bketch 5 = ¢ sae # — 2a coy g, (Strophoid.)
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VIIL5 THE FOUR-LEAF ROSE

Of the curves representing functions of multiple angles two are
of espeeial interest:

(1) p=acos 28, p=asn 26,

As one can see from the properties of the functions, these two
eurves differ in only onc respeet. 1f the angle 8 in the first is
increased by w/4, the values of p ure those of the second equa- {\
tion. Thus, having drawn one of these curves, we have merely, ,\
to rotate the figure through an angle of 45° to get the ot-l%“g

POLAR AX1S

@ FIG. 72—FOUR-LEAF ROSE.
@nﬂer the eurve (Fig. 72)
2 p = a«in 26.

T . T
p is zero for 8 = 0, % and every multiple of 7
T . ar
p is positive from 8 = Q0 to § = g negative from § = 3 tof =,

3 . J
positive from 8§ = # to ¢ = 2 negative from 4 = Py to # = 2,
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p attains its maximum absolute value for every odd multiple ofi-

After § passes through 27, the values of p repcat. That ig, the
curve i3 then complete,

A similar analysis can be made for the curve

(3) p= asin ng, ’&(\

It can be shown that if » is an odd number, the cury %é n
loops, each bearing a family resemblance to the Iooﬁ} of the
curve shown, If % is an even number, the curve has { tich loops.

&

VL6 SPIRALS ' '\Q
There are many curves that have a spira@ﬁpe. Two of these
have considerable interest for us. {2},

The simple algebraic equation, é

*

a); P a,
is one of these, It is sometwﬁmwn as the Spiral of Archimedes.

POLAR AX1S

HG. 73.—SPIRAL OF ARCHIMEDES.

As 8 inereases by 2w, the radius vector increases by 2xa.



CURVE TRACING IN POLAR CO-CRDINATES 109

Another spiral eurve is given by the equation
{2) p =%
Tt is sometimes known as the logarithmic spiral (Iig. 74). The

POLAR AXIS

FIG. 74.—LOGAR$»3\’ SPIRAL.
tangent to the curve at any kes a constant angle with

the radius vector. The proo'{é( is important property is beyond
the scope of this work.

VIli.7 THE LEM kG)”\TE
With the l:hs;?@ of one more curve, the lemniscate (Fig. 75),

we conclude chapter:

\(}

0

N N
N

FiG. 75 —LEMNISCATE.
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(1) o® = &’ cos 28,

Since (1} is not changed when ¢ is replaced by —¢ and p by —p
the curve is symmetrical with respeet to the polar axis ang
with respect to the pole. p takes on ifs maximum absolute
values for § = 0, and 8 = . p is zero when 4 is any odd multiple
of /4. p takes on imaginary values whensver cos 26 is negative,
i.c., between r/4 and 3x/4. Thus all the real points will be
found when 4 ranges from — /4 to 47 /4. ‘

N\
EXERCISES Q
Q&

Traee the following eurves, naming them, if possible:

1. p=2cos 28 9. P =rcosf. &
2. p=3sin 80 10. g% = 4 sin 24

3. p =sin 2. I1. =9

4. p = cos 30 12 ng\\

e )
5. o =oin (g) o)
¢ i &2".
6. p=2¢cos(=])
3 NYp = see d - tan 8.
7. p=sintg. &l. p =2 tan 8.

8. p =sin? @ 4 cogt g,
16. Write the polar equation curve 2zy = g2,
17.  Write the polar equatio the curve o2 + 2 4y — 0,
18, Write the polar equation of the curve (z* -+ 3% + az)? = a2(z? + o)
19,  Write the rectmg§ uation of the curves in Fixoreises 1, 5, 7, 11, 14,

Find the points of Q{ﬁl\ ction of the following pairs of curves and plot the

22, p =3 p=1-—coss.
23, 05 24, p = 2,
24, }@200826,p=2c036.
~X§\

graphs.
200 p=4 co@ 2,
21, p = a(s g 8), p = a(l + cos 0),



CHAPTER

GENERAL METHOD
OF CURVE TRACING.)\(\

IX.1 INTRODUCTION

In determining the locus corresponding to %ven equation,

which is one of the very important phases Yalytic geometry,
certain gemeral principles offer the ady ee of a systematic
attack, as well ag a reduction in the nt of labor involved.

The following pages present some ofgljese general considerations,
which have been found helpf@l sketching the graphs of

nquations.

IX.2 SYMMETRY Q@

Two points are sai e symmetrical with respect to a given
line if that line 15@6 perpendicular bisector of the line segment

& 0

Q
FIG, 76.—SYMMETRY,

joining the points (Fig. 76). Two points are symmetrically
placed with respect to the mid-point of the line segment joining

them.
111
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It is evident that if we knew in advance that a curve has an
axis of symmetry, the labor of drawing the curve would be
greatly reduced. There are a few lines such that the symneiry,
or lack of symmetry, with rospect to them can be easily tested.

1. If y occurs only in even powers, the curve is R¥IN-

metrical with respect tothe z-axis. Fo T, correspornd-

ing to any point (z1,y:) lying on the eurve, there is , {\

asecond point (;,—y,) whose co-ordinates alsosut ’\

isfy the equation, and these two points are Sy

metrically placed with respect to the x-axiR.O
EXAMPLE 1. Test the equation ¥=ux'+ 2 for meiry with
regpect to the z-axis. (Fig. 77.) v(}ﬁ

N

” O
_ ‘\(z}

0 FIG. 77.

There are no edd powers of i, hence for any value of z there are two
values of y, humerically equal but with opposite signs, except for
z=0,1,0r -1, when y = ().
Tt is easy to see that ¥ is real for

. . -1=2z=50 and z 2= 1,
and iroaginary for all other values of & By plotting a few typical

goints in the range of # for which ¥ is real the eurve may be readily
rawn.
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2. By similar reasoning, if = occeurs only in even
powers, the curve iz syminetrical with respect to
the y-axis. The curve §* = £* — ¢ is not symmetri-
cal with respeet to the y-axis, since z occurs in
odd powers.

3. If z and y are interchangeable without changing
the equation, the curve is symmetrieal with re- /\

spect to the line y = . (‘)

If (zy,5) lies on the eurve, the point (y,#1) alzo lies
curve, and the perpendicular bisector of the lme\ Lnt
joining these two points is ¥y = =.

*

EXAMPLE 2. The curve zy = 4 is symmetric;y:respect to the
>

line z — ¥ = 0, since interchanging z and ¥ legyée the equation the
same.

The transformation of rotation of Q introduced in §VI.5,
had for its purpose the reductio “&gan equation to a form in
which axial symmetry Would§§ppamnt.

IX.3 CENTRAL SYMMEIRY

Another type of sygri)@fy, which iz not so eagy to recognize
in general, is symmety with respect to a point. If that point
is the origin, thé§ 15 very simple.

Two points@e symmetrically placed with respect to the origin,
il the ¢ nates are numerically equal, but opposite in sign,
sords, if the origin is the mid-point of the line segment,
the points.

Qcm’ve is symmetrical with respect to the arigin, if correspond-
ing to any point, (z1,%), on the curve, there is a second point,
{(—x,—11), whose co-ordinates satisfy the equation. The test,
whether changing the signs of both @ and y leaves the equation
unchanged, is made most easily by examining the degrec of cach
term in hoth z and ¥. If every term is of even degree (a constant,
of zero degree, is classed as of even degrec) in x and y together,
or, if every term is of odd degree in and ¥ together, the curve
is symmetrieal with respect to the origin.
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EXAMPLE. The two curves

oa? — Ty -+ 22 = 15,
1328 — Aoy < Oy 45 = 0,

are both symmetrical with respect io the ori gin.

IX.4 INTERCEPTS

By sefting y ~ 0 and solving the resulting equation for z, ,V\(\
find the points where the curve crosses the r-axis (the z-i ﬂ}~
cepts). Similarly the y-intcreepts are found by sett-ing&guc 0

and solving for 3. “%Q
IX5 EXCLUDED REGIONS >
It may be possible, from an examination > equation, to

determine regions of the plane into which t-l@krve does not, go.
If so, the drawing of the curve is simpliﬁ%,

EXAMPLE, Sketch the curve &o

:cs—:c“"yﬁ—g@s’c: 0.

The eurve is symmetrical wit ﬁet %o the origin, since every term
is of odd dogree in 2 and y.,\

The curve is not symr{@ al with respect to either axis.

The curve crossesdbe T-axis at the origin, but in no other real points.
I erosses the yegmis only at the origin.

Bince the ation is linesr in g, there ig oue and only one real point

¢orres @ng to any real value of *, cxoept for x =1 gapd z = —1
for w&% values ¥ is not defined,

mm solve for y,
0 it o T - N
P~1 (2—1)(z41)
We sce that when & approaches
increases indefinitely,

¥
+1 or —1, the numericul value of ¥

When x> +1, y is positive.
When 0 < <+1, ¥ is negative,
When —1 <z <0, % is positive.
When z «—1, ¥ 18 negative,
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We may, then, block off portions of the plane, as shown in Fig. 78,
and thus arrive more rapidly at an idea of the curve,

!l

T

I==x

2
S

iX.6 %MPT OTES

11 example of §1X.5, we saw that when 2 ecame eclose to

wr of the values +1,—1, the numerical value of ¥ became
ingreagingly large. If we were to substitute x =1 or 2 = =1,
we should find that no value exists for y, The two lines, z = 1,
z = —1, are called vertical asymptotes of the curve. An asymp-
tote is sometimes defined as 2 line that the curve approaches
more and more closely as it recedes indefinitely from the origin.

In a similar way, we somctimes find horizontal asymptotes,
lines such as y = ¢. For this case no finite valuc of z exists

corresponding to ¥ = ¢
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EXAMPLE. Sketch the curve oy - 3z — 2y = 0.

Solving for y, we note that y = — 3z2/(x — 2). Hence, y is negative for .
values of z greater than 2, positive for all other positive values of z,
and negative for all negative values of 2. The line =z = 2 is a vertical
agymptote.

If we solve for x, we find
e M, A\

y+3 (’?
Hence, the line i 4- 3 = 0 iz a horizontal asyvinptote. x is po@ or all
positive values of y, negative for —3 <y <0 and positi,v.egor all other
values of y. The curve (Fig. 79) passes throngh the ng

= Y3 o

FIG. 19

pf the many curves of degree threc, there are a few of such
miportance that we should be familiar with them. The prin-
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ciples given in the preceding pages are easily applied in drawing
the curves of the following exerciscs.

EXERCISES

Sketch the following eurves.
1. The cubical parabola, ¥ = &2

2. The semicubical parabola, 3? = z*
3. The ciszold, y*(a - z) = 25
4, The strophoid, ¥a — 2} = &% + az®.
5. The folium, = 4+ y = 3y,
6. The parabola, £33 4 ' = gli2, 7. '"The witch, y = R + 4(12 &Q
8.y =uz'— axrt, 13. y%—a:3+2:z:2-—:c+ .
%y =t — 3% 4 2. . 14, 3 = 2% — azt,
10, yla? — %) = 2% — daix. 15. 32 = 2% 4 azt {8
1, -z t+a+y=1>0 16, ¥ =% — 2, &
12, zy+ 3y — 2x = 0. 17. 2 =28+ \
IX.7 TRIGONOMETRIC FUNCTIONS (2
We recall from trigonometry that if nstruct a eirele with
radius r, with center at the omgm aw any angle ¢ = 40P,

FIG. 80,
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a8 in Irig, 80, the length of the perpendicular MP = r sin g. If
OF meets the tangent to the circle at A in the point 7, the
length AT = r tan é, and OT = r sec 4.

If ¢ is an acute angle, all three of these values are positive.

When @ lies between #/2 and 37/2, illustrated in Fig. 80 by

angles AOR,A08, the secant is negative, since the new posi-

tion of point T is in the opposite direction from the tcrmjn{k
line of tho angle. For angle AR, OR would be considercd 0};—

tive, and hence OL would be negative. &S

If 8 werc an obtuse angle, the segment AT repres ing tan ¢

{AL in the figure) would be negative, while for amyhngie in the

third quadrant, such as A0S, the value of Qh@mgent is again
N

positive, &

To graph the equation {\‘b’

{1) Y = 5in Q

note that the angle is exprew radian measure. (180° = =
rudians.) We can, of course,gsgbstitute values of z, look up the
corresponding values of & a table, and plot points. 1t is
easier, however, to ap@ graphic method.

Divide a circle o I‘NCJ? radius into any number of equal parts.
{32 parts give @ea&ona‘bie degree of accuracy.) Starting {rom
the origin, @oﬁ' a succession of cqual segments each equal
to =/16. @-‘e use for each of these segments the chord corre-
spon%ﬁ@ 0 the angle =/16, the result, while not accurate,
v S an error of approximately 6/10 of 19.) Draw vertical
llg through these division points, and lay off on these the
(Oydinates cqual to the corresponding values of M P taken from
the cirele.

It is & saving of time and effort to draw the unit circle with
center on the z-axis and run horizontal lines through the divi-
sion points on the cirele, marking the intersections with the
corresponding vertical lines. (See Fig. 81.)

A similar process may be used to skeich the curve

# = tan z.
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A

“f
T T

FIG. 81.—y = sin x.

If we remember that cos z = sin (7/2 — %), we can easily devise Q’\

8 method for sketching the curve 3 &
Y = oS L. '“5}‘
A\
These curves are called periodic curves, since the g alues

of y are repeated at regular intervals in the horizo{K ircetion.
If we multiply = by any constant, k, the effect N‘)O change the
period. Thus the curve y = sin 2z has a pe '@’haif as long as
that of the curve ¥ = sin . &o

IX.8 EXPONENTIAL AND LC@@I‘[HMIC CURVES

The curves

(1) §~§

can be drawn with tk&h‘ﬁb of the table of exponentials. (Fig. 82.)
é@
>
O
@(\
QP

e

FIG. 82—y = e~
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We note that y is never negative, that for negative values of
z, ¥ is between 0 and I, and decreases toward zero as z takes
on large negative values, that the curve crosses the y-axis at
(0,1), and that y increases very rapidly as @ takes on increasing
positive values.

Similarly, a table of logarithms enables us to plot the curve,

@) y = log, . &

It is worth noting that this curve and the curve y e}' gif‘fcr
only in the fact that the interchange of 2 and v caudes an inter-
change of the two curves sinee (2) may be writisidas z = ov.

The cxponential functions are very import xn many applied
problems dealing with such matters as grc , rates of chemical
roactions, radioactivity, cte. ‘\(b.

' ExERc@
Diraw the following curves: \
I,y =sing &6. o= cae X,
2. y=cosz. & 7. y = sin 2z.

3. y=tanz. @ 8. y =2c¢oy 21
4. y =cotz, 9. y=2zsnz+ 2 cos
’Q 10,

5. y=seex ¥ = tan 2x.

% 11. y = cos (%)
the help bles of exponentials, draw the following curves:

y = e%@ —i_

3. y=¢ 15, y=—e

With
12

14. €.
lﬁﬁ the catenary, y = a/2(e>/c 1 e=in) fora = 2.
Plot the probability curve, y = ==, .

OBy means of 8 tabie of logarithins, draw the following curves:
0 18, y =loggrand y = log.x.

19. y = logat.

2Q. ¥ = logm(z + 1}

21 ¥ = logz.
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GENERAL METHODS OF CURVE TRAGING

Symmetry

with respect to x-axis ¢ only in even powers

with respect to y-axis x only in even powers

with respect to line ¥y = x  x and g interchangeable

with respect to origin changing signs of both x and y

does not change the equation ﬂ\

Intercepts 0&

set y = 0 and solve for x {3{
set x = 0 and solve for y &(b
Y
Extent of curve ' \>

Block off regions into which curve does 1 @

Asymptotes .

Vertical— solve for y and set de inator = 0
Horizontal—solve for x and sefdenominator = 0

S
Plot points whose co—o{@ es gatisfy the equation



CHAPTER

PARAMETRIC EQUATIONS

X1 | DUCTION

Th Te times when a direct relationship between two vari-

5, & and y, is difficult to express by a single equation. Or

@len if such an equation can be found, it is so involved as to be
Qdifﬁcult, if not impossible, to determine corresponding values.
For example, the equation of the cyeloid, the curve traced out

by a point on the rim of a wheel rolling along a straight line, is

a— 1 .
I = ¢ are cos ( — ‘5{) - \/L’a.y -~ ¥
[

It we had to find values of ¥ corresponding to values of z, we
should find that the problem presents some practical diffienlties.

122
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But if we express # and y in terms of the angle through which
the wheel has turned from an initial position, we have

z=qalf — &in &),
¢ = all — cos ).

Then the determination of the co-ordinates of any point on the
curve becomes a matter of substituting valucs of 6. A

. ¢ &\
When z and y arc both expressed as funetions of g third, in g
pendent variable, we may think of them as being dctermjned@,
or measured In terms of this independent variable. Wessptak
of this third or independent variable ag a parameter, n the
equalions are known as parametric equations, ,\Q

N

The parametric equations often arise from nsideration of
the vonditions under which motion ta. ‘kice, as in the casc
of a projeetile, assumed to be acted u@oﬂy by a ronstant
gravitational attraction of the eartlx}‘ dere the equations are,

o = g sin.g&% é at?,

T = s a-t,

where », is the spe =d$(sil~ the start, when { = 0, a is the angle
that the path ma, yith the horizontal at the start, and £ is
the fime in sec )

In graph‘iv%)such cquations, we can, of course, substitute

e parameter, compute the corresponding values of
and plot in the usval manner. However, except for
o] values of the parameter, the computation is apt to
pMve cumbersome, and the integral values will ordinarily give
points so widely separated that it is difficult to see from them

what the eurve is like,

To overcome this difficulty, it may be found convenient to have
fairly sccurate drawings of a few standard eurves, such as
§ =1, 5=, from which values can be found graphically for
any value of ¢, and thus the co-ordinates of points on the
curve can be found without a lot of laborious arithmetic.
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EXAMPLE. Bketch the curve

=42,
y=88-8+1

Using the graphs of ## and # in Fig. 83, we can readily find the values

,n::z ,:‘3 y::g

D

xND

Iyl

/&‘" ]

F]G. 83—\0’ = Xz, ¥ = x3

of e and y that correspond te & convenient value of . By plotting the
pomts we can draw the graph, as shown in Iig. 84,

A fow i.rnportant points, such as the intercepts on the axes may also
be readily found by direct methods,



PARAMETRIC EQUATIONS 125

FIG. B4—x =2+ 2, y =t — 24 1,&

>

X.2 CONSTRUCTION OF ¢ &
OA{}%;

Construct two lines at right angles, take the distance
04 = 1.-On the line OF take OB “any arbitrary length.
Construct BC perpendicular to A B¥¥hen, from plane geometry,

FIG. 85~—GRAPH OF t

0C = . Continuing to draw perpendiculars, as shown in Fig. 85,
we find OD = &, OF = 4, OF = 15, etc. If OA were taken = q,
we should find OC = &/a, OD = #3/a?, ete.
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EXAMPLE 1. Sketch the curve

=141
y=1-—28

Draw through A (1,1} vertical and horizontal lines (Fig. 86). On the

3

 y

&

O
QO
O

\0 FIG. 86 —EXAMPLE 1.

«.&%rtical line loeate B, 14 unit above 4. Choose an arbitrary point €
00 on the horizontal line. Tt A€ = £. The vertical ling through ¢ is the
line 2 = 1 4 ¢. Draw 8CD = 90°. BA-AD = .
Then
{2 £

A= - = = 28,
BA  (lg)

The horizontal line through D is
y=1-28

Then P is a point of the required curve.
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EXAMPLE 2. Sketch the semicubical parabola = = £, y = £,

A dircet application of the method suggested in the discussion leads
to points of the curve. 4 is the point (—1,0}, & is any point on the

FIGG. 87—EXAMPLE 2: SEMICUBICAL PARABOLA.
y-axis with OB = {, BC is perpendicular to AB. (Fig. 87.)
The vertical line O'P has the equation

z =1t
CD is perpendicular to BC. The horizontal line DF has the equation
' y =

Therefore P is a point of the curve,
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EXERCISES

Plot or construct the curves given by the following parametric equations
either by caleulating values for @ and y, or by using graphic methods:

1. =4 y=12
2, z=ty=¢-—1
3., z=1y="0"
4 - %f})y=a+nvﬁ—L
5. =8 —-5t4+6,y=3%—512
6 z={tly=4f£—4 ‘\<\
7. By eliminating ¢, obtain the rectangular nr Cartesian equations @he
curves in Exercises 1-6. Q
Ans. 1. y=2" 2. -2+ 2% +1=0. 4 ny—yhe().
8 o= G(];F). 7 ’
) 1+# (b\
y = ol - &) (Strophoid.) ﬂ
144 QL)
3at NN
9 xr = T"'—Br 0
=+ £ (b'
_ Ba g
Ak B {Folium.)
10. By substituting y = tz in the equati * = ax show that
o ‘a
TTESRT

are parametric equations of an f‘% .

o
X.3 TRANSCEND&Q&L PARAMETRIC EQUATIONS

If the co-ordina ‘}K_s and ¥ are expressed in terms of the trigo-
nometric fun of a parameter, our knowledge of these
functions a eir relationship may suggest methods of con-

stmetion.(b,
O

C@ the curve,
O T = a cos b,
<> ¥ =ban @,

A suggested construetion is as follows: Draw two concentrie
circles with radii a,b and center at the origin, Draw & line OA,
making an angle ¢ with the z-axis (see Fig. 88) and cutting the
first circle in A, the second in B. Through A draw 2 vertieal
line MA, whose equation is

E=acosf.
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Through B draw a horizontal line, whose equation is
¥ = b sin 8.

These two lines meet in the point P, which is a point of the
desired curve.

If we climinate 8, by making use of the identity
cos? 8 + sin® 6 = 1, ‘{\\
we see that the curve is an ellipse with the equation &Q‘

e+bz L “3’

This is probably the easiest method of cons@g points on
the ellipse. 0

4

AG. 88.—COMNSTRUCTION OF ELLIPSE.

EXAMPLE. Sketch points of the curve

x = nsecd,
y = btan 8.
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Fig. 89 illustrates the construction of two poinés of the curve, P, P,

FIG. B\S@YPERBOLA.

P corresponds to an acute@le #, P’ to an angle in the second quadrant.
The eirele is of radius ile the line BB’ is at 4 distunce & to the right

of the origin. \K

AM is tang, t@%e eirele at A, B is the point in which OA interscets
the line B % is horizontal and has the equgtion

\0 Yy =5 tan g,

N
ﬂ:ﬂ@s vertical and has the equation

0 T = (& Beg d.

Then P is a point of the curve,

The parameter 3 may be eliminated by the uge of the identity
sec’ ¢ — tan? § = 1,
giving the equation of the curve,

2 oy
Ty 1.

[
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EXERCISES
1. Carry through the details of eliminating the parameter # in hoth
of the illustrative examples.

% Dy the suggested method construct s number of points ou cach of the
following curves, and sketch the eurves:

(a) =23 008 6, (d) x =3 secs,
¥y =2 gin 4. ¥ =4 tan 8.
(hy x= €os B, (e) x=ua(ecost +{sini),
Yy =4gin @, ¥y = {sint{ — teos i),
(e} = =4secs, ) s=a(2cost— cos 2), ¢ <\
y=3tan g ¥ =a (2sin{ - sin 28). N\
3. Devise a method for construeting points of each of the following: '
{a) =z =4 secs, (1) =z = alp —sin g), 0&
¥=4%4cosd ¥=a(l-cosd).
(TI;K bid.)
(b} == 3coty, {e) x:a&—-bsinﬂ,(b
¥ =3 tan 8. y=a—bcosﬂ
a-<h, prola.t@; oid,
a>h, curt\ Yeloid,
(€) = =14 1tane, ) z== 1\358,
Y = tan & 4 sec 4. . y=c sitt B.

4. Determine the rectangulir equation whickgedsresponds to 3(f) and
slhiow that it is the equation of a circie.

X.4 THE HYPOCYCLOID Ol;é@@ﬁ CUSPS

This curve, which is of considg interest, is given by the

cquations A

(1) A a cos? 8,

% i = asin® 8.

wt the following construetion method.
s a {Fig. 90). Draw any radius 04, making
the z-axs. Draw AM perpendicular to OM,
ME pe icular to 04, RS perpendicular to OM.
O8=¢ 08 8§ = (A cos? = OA cos® 4. Draw AN perpendie-
ulay N, NQ perpendicular to OA, L& perpendicular to ON.

0 O =00 sme=0Ngin?é = 04 sin® g
Then L meetz RS in £, the desired point on the eurve.

These equations
Draw a circle o
an angle #

We note that the entire curve lies inside the cirele and that the
curve hag four points on the cirele.

If we climinate the parameter 8, we find the rectangular equation

228 4 yz_ra = 23,
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)
FIG. 90.—~§§'POC‘/CLOID.

x\\%u—:msss

1. Show the steps in Sadink the rectanguler equation of the hypoeycloid
of four eusps. K
2. Bkotch the ¢ x%\ 3. BSketeh the curve
x=4cos“65 z = b cos? @,
y = 4 sig? 3 = 3 sint 8,
4, Devise énstructiun for the curve
z = 8,
£n 6.
5. the rectangular equations for the curves in Exereises 8 and 4.
6 etch the curve 10. Sketch the curve
{} zlggﬁfg:;fz%f’ $=(a—b)msﬂ+bcos(a—-8;b).
7. BSketch the curve : t—Hh
x=gcnsﬁ‘—nos3ﬂ, y={z2~"b)sin g — bsin (b—ﬁ)
¥ = 3 5in 4 — =in 34,
8. Sketch the curve 1. Sketch the curve b
T = 3dcosd - 2 cos 34, x=(a+b)cosa—bcos(a—?~ﬂ)s
¥ = 3 ain ¢ — 2 sin 34, ’
9. Sketch the curve y=1{a+bsind — bsin (E_ﬂ’e)_
T =2 ¢os 0 + cos 28, b

% = 2 8in § — sin 24,



CHAPRTER

Al

EMPIRICAL EQUATIONS

X1 INTRODUCTION ‘Q\

in the development of formulas and equ e@ of loel in the
preceding chapters, the geometric condi é&l involved have
beenr very gpecific and of such a natu@ to lend themselves
more or less readily te algebraic for tion. In other words,
we have known that there ¢ a definitc functional
relationship between the variabl@® and building an equation
has been merely the process anslating known relationships
into algebraic language. 0’\

There are a great m%QSr cascs in which, although we are con-
vinced that a rcl ship exists, we do not know the precise
nature of that@@ltionship, or may bhe unable to express that

relationship hathematical language. For example, at any
given fi ertain thermometer gives a definite temperature
readi hls mmplies that there iz a definite relationghip

hetw temperature and time. But that relationship is so
j ed that the only way we can, at present, exhibit it is by
ng of a chart or a table of corresponding values.

The fundamental assumption on which all science is based
iz that all events happen according to some law. The search
for relationship of cause and effect that will enable one to pre-
dict what will happen under given circumstances would be
utterly futile and meaningless if events were governed purely
by chance.

133
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For the scientist, the existence of a law is evident from the
fact that his obscrvations are grouped in such a way as fo
indicate, as the statisticians say, a significant trend.

Once he has ohserved such a significant trend, his next problem
is the formulation of an equation between the variables he has
ohserved, which will enable him to predict with some degree of
preeision what will happen under circumstances of like ns.t\IQx

The systematic attack on this problem of formulsating eﬁ% ong
to express relationships observed by experiment &}stitutes
the present chapter on empirical equations. I neral, we
cannot hope for absolute precision in our ts, for two
reagong, First, not knowing all the factt@ olved, we can-
not be sure that the type of equation use presses the actual
relationship. Second, there may be, {@%mb&bly are, grrors
in the experimental observation \Q ghall, however, expcet
that our equation shall approximb he observed relationships

as closely as possible, while_gdaining, for economy of time
and effort, a simple form. @

The determination of ﬁ?’mal equations ig a twofold problem,
which attempts to er the guestions,

relation be the variables?

{a) What tygc}i\f equation most nearly expresses the true

(b) W are the best values of the arbitrary constants or
p ers that oceur in the chosen type of equation?

@r example, if we desire an equation that will express the
eekly average temperature as a function of the time in weeks,
we might assume, since the fluctuations are apparently periodie,
with a period of approximately 52 weeks, that

™
U= — [t
acos26(+a),

where u is the weekly average temperature, { the time in weeks.
We then undertake to determine the arbitrary constanis, @ and
@, in such & way that the values of u computed from the equa-
tion may correspond as closely as possible with the available data.
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Xl.2 THE SCATTER DIAGRAM

We shall limit our discussion of empirical equations to two
variables, even though many of the principles developed can be
extended o more than two variasbles. For convenience in dis-
eussion, we may suppose that z and y are the variables to be
related, although in practice we work with any convenient
symbols as variables.

Suppose the observed values of » are #1,%2,%5, . . . , and the® <\
corresponding wvalues of ¥ are w,m¥s . . . . Each pair .
corresponding values (z;y:) may be represented graphical %

a point in the zy-planc. The geometric figure formed he
entire group of points determined in this way i <Q ed a
scatter diagram. é'b

*

Tt there is a significant relationship between m\@ %, the points
of the seatter diagram will tend to clust-cré@nd SOme eurve.

It is the equation of this eurve whig wish to determine,
EXERCISES,
1. . The number of degrees granted b ertain college each year for a
ten-year period was as follows:
Year, x: 1 283 4 5 6 7 8 9 1o

5 163 228 243 300 322 370 430,
he given duta and draw a smooth curve

Number of degrees, y: 128 131
Construet a seatter diagram
whigh scems to show the t
2. Some experimental{gkdefimtions of the temperature ¢ and the corre-

sponding pressurg pyvin millimeters, of superheated steatn give the

folowing data:
50 70 80 90 100

t (Centigrade): 0 % 20 30 40 80
» (Millimeters) : $ 4 174 .5 550 022 140.2 2338 3555 526.0 760.0.

Consiruct th or diagram, and sketch a smooth eurve to represent the

relationshi
3 A & 'of students rcceived the following grades in algebra and
tri metry:
Alpebra: AABBCADFDFCRBAC
Trigonometry: A BCACFCBD FRBC D D.
um{ng A=1,B=2 €=3 D=4, F =5 plot the scatter disgram,
W draw s straight line which seems to indicate the trend.
4, Construct 8 seatter diagram, and draw a straight line which approxi-
mately fits the following values of z and ¥:
2 05 1.0 L5 20 25 30 35 40 45 50
y: 10 19 20 46 51 66 78 89 101 115.
Assume the equation of the straight line to be in the form
y =mxr+b .
and dotermine the slope, =, and the y-intercept, b, from the graph. Using
the equation chtained in this manner, compute the value of y for cach of
the given values of @ and compare these values with the values given in the
table.



136 EMPIRICAL EQUATIONS

5. Construct a scatter diagram from the data in Fxercise 1, using x as
shscissn, and log y as ordinate. Nete that the points constructed in
this manner tend to lie on & straight line. Draw the Jine.

X1.3 TYPES OF EMPIRICAL EQUATIONS

The determination of the particular curve that will adequately
represent the relationship betwcen the variables is a matlter
calling for the application of skill and some intelligent guess-
work. It is important, from the standpoints of both d{:’r.ewmg\-
tion of the curve and its application, that the form be as siﬁ}) e

a8 possible, \\
O

The way in which the points of the seatter dia are clus-
tered forms a rough guide for a tentative ske; f a smooth
curve, which can be compared with curyegswhose equations
are known, in order to select the proper £y

A knowledge of the phenomens gjvi&&iac to the data often
forms an important clue. Thus th \@st-en(:e ol vertieal asymp-
totes (where % becomes infinj &)f maximum or minimum
values, of periodic charactegﬁ' 8, would be valuable aids in.
choosing the type of curve

An extensive discussipfNof the types of curves that might occur
would be beyond 4 ope of this text. A few, which are fairly
eommon and (:&SQS( recognized, will suffice to carc for most of
the casos usua%encountered. The five that we shall consider are:

() The %ght line, ¥=mz+ b,
(b) TheParahola, Y=o+ br+ cx
{c) exponential curve, y = ab®,
{ e power curve, ¥ = az®,
Qe) The hyperbolic eurve, Y= _e
0 b+ x
EXERCISES

L Graph on the same axes t1 = az"
o 2B grythe same 68 the curves y = az” for a fixed value of a, and

2, fz=loga and w = log , show that the equation i = az" leads to a
linear equation i z and w,

3 igi]:;ynw that if log = and log y are connected by a linsar equation of the

log y = b+ clog 2,
% and z are relatoed by an equation of the form ¢ = aar,
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4. Show that i the values of y eorresponding to the valuesz = 1, 2,3, . ..
form an arithmetic progression, the relation between x and ¥ may be
writlen

y =mz +b,

where m and b are constants,

Show that if ¥ = ab®, the values of y correspondingtoz = 1,2, 8, . ..

{orm a geomnetrie progression.

6. Hhow that if the values of log y corresponding to o = 1, 2, 3, . . . form
an arithmetic progression, the values of ¢ form a geometric progression,
and thai the relation between z and y may be written

y = ab®.
7. If the values of y corresponding tox = 1,2, 3,4, ... are iy, Ve, ¥ Uy - .

SJI

and welet 21 = ys — ¥y 22 = ¥s — Y, %3 = #4 — ¥1, . . -, Show that wher
y =g + bx + ex?, the values zy, 2za, 25 . . . form an arithmeti
Eression.

8. Diszcuss the eszenfisl charaecter of the curves defined by /‘%’
a ' 4
¥=5_3 \(b
und constrict graphs for different values of b, ke ;a fixed.

9. Show that Boyle's law pr = ¢, where p is pmssu@nd # is the volume
of 4 gas under constant temperature, is a @u case of the hyper-

bolic cquation
. &

Y= 1=
10. Plot the curves defined by ¥ = ? keeping a fixed and letting
£ =05, 025 0.1, 2 Could this of an equation be used when y

tukes on both positive and n e values? When y approsches zero
ag ¢ increases? When y is 2 rz={07

I1. Could the results of Exerfgs 3, 4, 6, 7 help in selecting type ewrves?
If so, formuiate a guié‘} rinciple in each case, in your own words,

Xl.4 DE}EARM@\‘TON OF THE ARBITRARY CON-

In general, ype forms of empirical equations involve arbi-
trary congtefts that must be determined from the corresponding
values ]ﬁe variables found by chservation. Thus, if the data
cal@ o straight line, y = mx+ b, we should be able to
@mmine the constants, m and b, from the experimental data,
some logieal method. .

If we knew the exact valucs of y corresponding to two distinet
values of z, we could determine the line, since a straight line is
determined by any two of its points.

In general, if we knew the exact velues of % for as many values
of = as there are constants to be determined, we could substitute

and find these constants.
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The trouble is that we de not know, in experimental data, that
our observations are exact. In fact, since they are observations,
we know that they may be subject to error. Therefore, instead
of finding the one curve, we must find a curve that we judge
to be the best fit for all the observations, whose number will
normally be considerably greater than the number of constants
to be determined.

A rather direct method would be to make the scatter di 11<r:
and draw the smocth curve that seems to fit best. Thed hGting
the co-ordinates of several points on this eurve, one cg}ld com-
pute the values of the necessary constants. Speci 'x%l;ad papers
have been devised to assist in this sort of w ut, at best,
the method is open to the serious criticisp M3t it rests on the
personal judgment of the individual, an\nghence may lead to
different inferpretations of the same

Aside from the purcly graphical &od, there are three well-
established methods. They argss *

{a} the method of average
(b) the method of moments,
{¢) the methad of le@qum‘es.

The last ot the&i\gee we shall omit, since its development
Tequires a kc%rl dge of more advanced mathematics. This
omigsion ]@ t seriously handicap us, since the application of
leasgt sq to fitting a straight line or a parabola leads to
exac{elg; e same computation as is found by the method of

mao;
R
METHOD OF AVERAGES

The method of averages is most easily presented by means of
& special example.

EXAMPLE. Determine the empirieal equation fitting the following
corresponding valdes of 2 and y:

#0510 156 20 2.5 30 35 40 45 50
y:10 19 20 46 51 66 78 89 101 113

T_he scatter diagram corresponding to this table of values is shown in
Fig. 81. The graph shows we may expeet a good {it by using a straight
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line, whose equation we assume to be

¥ = mr
Let us divide the ten pairs of Vﬁb§§ into two groups (the number of
groups equal to the number ynstants to be determined). SBuppose

the first group consists of & ~%irst five pairs of valtues, There is a point
whose z 15 the a,rlt‘,hmetiﬁxﬂ& 7, or average, of the x's of these five pairs,
and whose ¥ is the etic mean of the y's. Similarly the second
group of five pai o lues leads to a sccond point. These two mean

Ztermine u straight line, which we assume fo be the
ine fitting the data.

or average poj
desired straj

In t-h:@cular case, for the first mean point,

5 F 2425
0{:} e (0.0 +1+415 _E—___—_f_—_z_o) - 15,

)= (e L)

o

The second such point is

(3+35+ + )_
SO (ot ol e i
1

4
y- (66 + 78+ ¢ f% + 101 ___1-_) _ 804,

01
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Bubstituting these co-ordinates in the equation ¥ = mz + b, we have
the equations,

81 = 1.5m+5,

94 4m + b,
Solving these two equations, we find m = 23.36, b = — 4.04, and the
equation of the straight line is

¥ = 23.36z — 4.04.

It should be recognized that the result is dependent upon the mapdon
in which the two groups are set up. For example, if we had ta a%e
first, third, fifth, seventh and ninth pairs of values for the firs %m,
and the others for the second, the mean peints would ‘¢ been
(2.5, 53.8) and (3, 66.6). The corresponding straight linxﬂ%ﬁhl be

y = 25.6¢ — 10.2.
{b

Sinco a slight vardation in the position of thevl@ points has lesg

influence when the peints are well sepamtw}mn they are close

f

together, it i wise o select the groups with4Me'in mind.

The extension of the method of aw;@ t0 equations with more
than two constants is fairly obvi t involves forming a num-
ber of groups corresponding ta¥hé number of constants to be
determined, Practically, t ethod 1s limited to equationsg
that are linear in the ¢ ants, like those in which v is a
polynomial funection q?, or which ean be reduced to linear
equations in the con 8, as, for example, by taking logarithms
of one or both m&ébers of the equation,

EXERCISES

1. Determi&equation of the form y =~ mz -+ b from the following data:
w1 2 3 4 5 &

; @(& ¥ 5.8 5.6 5.0 4.8 4.5 4.1,
2. B and b from the following data, under the assumption that

az? -+ b
.&i\ e 05 10 15 20 25 30 35 40
7110 18 30 47 70" o7 129" 165

0@ Observed valucs of P, the power developed at one end of & transmission
line and W, the work done at the other end, are

Pz 30 10 150 200 250 300
W:49 92135 175 210 230,

If wo assume W~ op _ bF°, determine values for g and & by the
method of gverages,

4. The melting point, of 5 zine and lead slloy js given hy
. =@z L bz
where ¢ is the temperature and z ig the peroentage of zine. Determine
the constunts a, b, and ¢, from the following data:
2: B0 50 40 30 9p 10
t1186 205 226 250 274 305,
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5. The numbcr of bacteria in a given culturc at various times is assurmed
to follow a law N = a-10%%
Obzervations yield the following data:
£ 0 1 2 3 4 5
N: 150 271 501 914 1665 3000.
Construet a seatter diagram using £ and log ¥V as co-ordinates, Assum-
ing thut these lic on a straight line, determineg ¢ and b from the cquation
log N =log ¢ + Bi.
6. Given the following data:
=1 2 3 4 5 &
v 40 7.1 104 13.4 16.6 19.6 ’\<\
vonstruet a scatter disgram using log x and log y as co-ordinak N
Assume that those points tend to lie on a straight line log y = 4
log z and that as a resulf y = az?. Defermine ¢ and b, 6

XL6 METHOD OF MOMENTS '\“’S'i
Tet @, o, Ta, . - - , Tn be a set of values of a@cpendent
variable, x, and %, %2, ¥ + - -, ¥n, the corre ding values
of a variable, y, which depends on z. The quegérty

() mbogut mb ot mhga b - . +5r€§-\y,. — Mauly),

where & is zero or a positive integer, s led the kth moment
of the values of y, relative to @gin of z. If we use the

notation
{(2) Tu;=wtamtus+ ...+ U

i=1
{to be read the sum {@rﬂm one to n of u sub 7, and to be
interpreted as the of all possible terms of the form wu;
when i takes ¢ essively all integral values from 1 to n,
inclusive), we write the expression for the kth moment as
3 = $,;k I
(3) /&C} Y

i tl@\m no possibility of confusion as to meaning, we may

:s@ﬁate by writing £ z*y.

Thus the zeroth moment is T () = Z y: = 2y,
i=1 i=1

the first moment is = () = Z (zy),
1

i=

the second moment is - E(zfy) = T (z%), and s0 on.
i=1

(The moments are also defined as the foregoing sums divided
by Zy. The usc of this division would not change the equations
which follow.)
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I the observed values of ¥ were precisely the same a3 the values
computed from an empirical equation, the moments of both
sets of values would be identical. If we impose the eondition
that thesc moments are equal, where the computed valucs are
expressed in terms of the arbitrary consiants to be dotermined,
we secure & set of equations that will enahle us to find the values
of these constants. Clearly, we need as many moment, cquations
as there are constants to be found.

N
For example, let us apply the method of moments to l(g%ta
in the example of §X1.5. We shall need two raoment.o bions,
mnvolving the zeroth and first moments. Using Q&;symboh’(:

form, these are, &
Zy = mZzx + bZ1, '\\Q}

Zxy = mIxt 4 be.&

Note that, by our definition, Z1 = #, simé&ich of the ntermsis 1.

*

The details of the computation iaggg;wn in the following tahle:

x Y x? Ty

0.5 1 0.25 5.0

1.0 9 1.00 19.0

1.5 & N2o 2.25 43.5
O

gg\ 48 4.00 92.0

% 51 6.25 197.5

Q80 66 9.00 198.0

é 3.5 78 12.95 273.0
O"Z}» 40 89 16800 3560
& 45 101 20.25 454.5
A\ 50 113 2500 565.0

275 602 96.25 2133.5
Z1=n =10, Xz = 27.5, 2a? = 96.25, Ty = (02, Say — 2133.5.
The two equations are

602 = 27.50m + 10.06,
2133.5 = 96.25m + 27.5h.

Solving, we find m = 23.18 and § = — 3.53, and the resulting
€quation is

Y =23.18z — 3.53.
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While this method is slightly more involved than the method
of anverages, or the graphic method, it has the decided advantage
of being independent of the individual judgment of the com-
puler, so that the results arc unique.

The extension of the method of moments to fitting polynomials
of second and higher degrees is quite dircet. For example, for
the cquation

y=ax'+ bz + ¢ . &Q’

the moment equations are 'Q”

Sy = aZa? + b2z + 21, >
Zxy = aZe® + bZat A+ 2z, ﬁ
Saty = aXzt 4+ bIa® 4 oSl &

Although the method of moments can be e({éﬁded to any rea-

sonable number of constants, the fact moments of higher
order tend to put undue stress on the Yalues corresponding to
the larger values of x makes the 1 moments of order higher

than 4 of questionable value.

RCISES

1. Determine by the meth@f momenta the equations of straight lines
fitting the following :

(@ z. 05 10 SL5S20 25 30 85 40
g 4 9 24 98 34 38 46.
myz 0 N2 3 4 5 6
i 12 30 43 50 58 64
(@ = 30 36 40 45 50
YA 78 80 81 82 84 85
@ £ 9 8 4 5 6 7T 8 9 10
\16.4 15.0 13.8 123 10.5 88 7.4 6.1 49 3.2

2. cubic centimeter of water at its greatest density, at 4° C., is heated,
0 s ineroase jn volume, b, cxpressed in units of 107° ce. is observed as

-1

8
75 87

follaws:
t(° C.): 10 20 30 40 50 60 70 80 90 100
A{1075 ce): 12 177 435 782 1207 1705 2270 2599 3500 4343.
Determine an empirieal equation of the form
ho=a+ b+ effy
fitting these observations.

3. Compute the values of & in the preceding excreise, using the derived
empirical formula. Compare the first and seeond moments of the com-
puted and the observed values.

4. Derive an empirical formuls for  in terms of x from the following data:

x: 1 2 3 4 3 &
¥ 200 244 284 320 352 38.1.
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5. Ohbserved corresponding values of z and w are ag follows:
x: 0 1 2 3 4 5
¥ 47 147 217 258 248 19.5.
Deerive a quadestic formuls for these dats, and compute values of i for
) r 05 1.5 25 35 4.5 6.0.
6. Compute the constants in Excreise 4 by the method of averages.
7. Compute the formuly of Exercisc 4 of §X1.5 by the method of maments,

X7 TRANSFORMATION OF DATA

.
The method of averages and the method of moments are oM
cially convenient for the determination of empirical ecqishnts
when the equafions are linear in these constants. AQ’(_. have
seen in some particular cases, it may be possible ‘means of
& simple transformation, to reduce a nenlinear éé& 0 a lnear
case. We consider a few of these in detail. ”Q&

N

(a) The exponential functi = ab=
If we take the logarithms of both r@{) s of this equation, we
obtain the new equation, b

log ¥ = lo@’-f— z log b,
The substitution, « = log = log a, B = log b changes this to

,Qu = A 4 Bz,

L N
which is the typ K@rm for the use of the method of moments
{(or the metho c& erages),

EXAMPLE e number of bacteria in a culture was observed at
regular i als of time to be as follows:

,gc} .01 2 3 4 5 § 7
N\ N: 50 95 165 304 546 1012 1830 3330.

_ : ®ompute an empirical formula for N as a function of £,

First construet a seatter diagram, using ¢ and N as co-ordinates, and
draw a smooth eurve to ind; cate the trend, The charaeter of this curve
indicates the exponential form for the empirical formula. An examina-
tion of the data shows that suceessive values of N have ratios of
1.9,1.74, 1.84, 1.79, 1.85, 1.81, and 1.82, so that the ohserved numbers
approximate a geometric progression with ratio 1.8,

We assume, then, that
N = ab,
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(There are also biological reasons for assuming this type of formula.)

The assumed equation may be changed to
log N =loga+1logb.

Using the method of moments, we form cquations from the zeroth and
first moments;
Zlog N = log a-21 + log b- =,
Z(tlog N) = log ¢- 2t + log b- 222, g

The details of the computation are given in the following table:

N log N £ tlog N &‘%

e

0 50 1.6990 0 0.0000
1 95 19777 1 Lo

2 165 22175 4 4

3 304 24829 9 87

4 546 27372 16 9488

5 1012 3.0051 15.0255

6 1830  3.2625 19.5750

7 3330 35224 :&9 24.6568
28 ' 20.9{@ 140 84.0675

sl=n=8 2f=28 2~ 1 £ N ="20.9043, (¢ log N) = 84.0675,

and the equations for ti)&.erm;natlon of log a and log b are

90 Slog &+ 28log b,
75 = 28 log a + 140 log b.

The solutions
% log ¢ = 1.7045, log b = 0.2506,

\Q a= 50:64 , b = 1.818,

andé@‘e our empirical equation is
N = 50.64 (1.818})2,

Q
(6) The power function y = ax*
If we take the logarithms of both members of this equation, we
have
log ¥y = log ¢ + % log =.
A substitution, u = logy, z = logz, 4 = log g, gives
we=A+ kz,

which is of linear form in A and k.
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EXAMPLE. The quantity of water dowing through 2 pipe is known
to be expressed by the equation

g = ark
where ¢ is the number of thousands of cubic feet per minute, » the radius

of the pipe, @ and & constants. Determine ¢ and % from the following
data:

rml 2 3 4 5 6 6\
g 4.8 27.5 752 152.4 264.2 410.0. Q

We first plot a seatter dingram from these data, using lo Qld log o
a5 co-ordinates. Sinee the points tend to lie on a ‘-t]"ﬁl K , the pre-
diction of a power function is verified.

Using the method of moments, we have \§\
Tlog ¢ = log @ 21 4 & %’g ¥,

z[log r-log g] = log a =1 £ b zllog v
The following is a convenicnt fom%r the eomputation
@ ¢ log » &og I tlog r)2  log r-log ¢
1 4.8 0000 b8124 00000 (00400
2 27.5 . S 1.43933 09062 A3328
3 75.2 12 1.87622 29764 89518
4 152.4 s\KhUQOG 218208 6248 1.31428
a 264, .BO8LT 2.42193 AREL6 1.69286
6 21@ TI85 261278 60552 2.03313
{5&' 285733 11.2144% 1.77482 6,36873

2 O zlog = 2.85733, z(log r)P= 177482, zlog g = 1121448,
g 7-log ¢) = 6.36873.

0 The equations are

11.21448 = 6 log a + 2.85733%,
6.36873 = 2.85733 log a 4 1.77482k,

The solutions are
E=248207, loga = 68667, o= 4.86037.
The required equation is

¢ = 4.86037 20,
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(c) Equations of the hyperbolic type

An cquation of the form y = S characterized by the fact

€T
that for a particular value of z, ¥ becomes infinite, and that y
approaches a limiting value as 2 increases indefinitely, may be
fitted to appropriate data by the method of moments.

I we clear of fractions, the resulting equation, .

zy + ey = az + b, &Q
is lincar in the constants. Using the method of momentg, we
find three equations (é

Try + 2y axzx —+ bZ1, .\&
Zady + Sxy = aZa® + b2z, \\
Srdy 4 Sty = aZxt 4 b \>
From these equations it is possible to @mine the values of

a, b, and e @
W illustrate with an cxa-mpl@, although not precisely of
the form indieated, will show use of this method.

.

*

eolumns is

N
EXAMPLE. Gordon's ﬁl\@a for the critical pressure, p, for oak

& 5
= —— 1
O P
where R 1@@ ratio of the length to the least dimension of a cross
section « and b are constants. Determine values for ¢ and b from

the 5$imentai data in the accompanying table:
0 R: 10 15 20 25 30 35 40

p: 845 770 675 385 510 433 375.
When cleared of fractions, the equation becomes
bp + pRE = a.

Applying the extended prineiple of moments,

brp -+ Epft = nuo,
Zpk + zpRf = oz,
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The computation is az follows:

E p Fie pR pR? pR?

10 845 100 8430 84500 845000

15 770 225 11530 173250 2508750

20 675 400 13500 270000 5400000

25 585 625 14625 363625 9140625

30 510 a0 15300 450000 13770000

35 435 1225 15225 AAZKTH 186500625 o <\
40 375 16800 15000 600004 240000005,\

175 4105 93650 2485250 7440409

¥R = 175, =p = 4195, n = T, upR = 93
Zpi? = 2,485,250, ZpR* = 74,405,000

The equations are \\

The solution is

4195 & + 2,485,250 =(§}}
93,650 b + 74,405,0% 5 a.

b= 1,003.44 a8 1,009, 962.

Hence, we obtain on substitu@sd®

L.

N 1,000,062
1,093.44 1 B2

s\\o EXERCISES
Given
v 0 1 2 3 4 5
yy 211 244 275 3.08% 3.30 3.87.
Ass b y = ae*, and compute ¢ und b from these data.
Herence in temperatures of a heated body and of the air was

ta obtained: .
i (time}: 1 2 & 4 35 f

2.
G‘a rved at the end of each minute for 5 minutes, and the following

0‘0

3.

u (difference in temperature): 119 106 94 84 75 67.

By means of u seattor diagram, show that an empirieal equation of
the form u = eet* may be used. Compute 2 and b

Fit an empirieal equation of the form
¥ = axb
to the following data:
r: 1 2 3 4 6 8
¥ 7.2 104 128 150 183 21.1.

The following observations were made on the rate at which a wheel
rotated in water after the power had been cut off:

¢ (number of seconds): ] 5 10 15 20 25

E {revolutions per minute): 1000 496 247 122 &0 29.

Fit an empirical formula to the data.
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5. The intensity of light that passes through a substanee of thicknass &
centimeters is observed to be:
Ry 0 5 10 15
L: 757 352 187 7.
Using these observations, determine the empirical constants ¢ and
bin the formula L = abh.

6. The diffcrenee hetween the observed value of a function and its com-
puted value is called a residual. Calculate the residuals in Exercise 5.

7. Tit an empirieal equation of the form y = a 4 b/x to the following
data:

L | 2 3 4 ]
y: 202 133 111 100 9.3. 3
8. D(:tr_\,rmincaandbint}?leformulm =-b— S fromt.hefollomngda.ta(}ﬁ
x: 3 4 5 4] 7
y: 155 174 193 206 218 226
In the following exereiscs find an empirical equation ﬁttmg tlﬁ en data:
0 w1 2 4 i 8 10 12
P: 15 32 50 9.5 13.0 160 19.0.
P = brake horsepower of engines of a cert: lmder diameter,
tabulated with the number of eylinders, n, of, %1 engine,
10. §: 10 20 30 40 50
£: 8 186 15 21 30

i = resistunce in pounds per ton to thn of a train with speed
& in miles per hour.

1. p: 18 20 30 40 50 70
¢ 807 275 249 224 204 5 169,
' (doprees contigrade) is the Melting point for an alloy of zine and
lead, and p is the percen% f zine in the alloy.
8 10 12

12, f: 1] 2 4
g: 76.00 7091 £1.79 57.68 53.81 50.24.
& = difference in ¢emperatures of a cooling body and the surrounding

air at the end of inutes.

13, p: 10 30 40 ab 60
¥: 3778 3 13.50 10.39 8.35 6.63.
V=w in cu. ft. of a pound of saturated steam at a pressure of
7 po cr square ineh,

(\
N
0‘0
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RECTANGULAR’ CO-ORDINATES
IN THREE DIMENSIONS QO
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XILt INTRODYCHON

Any point in @hree-dimcnsional space is determined by three
co-ordinates

1f .we& Lo locate an objeet in a room, let us say, a light, we
ml@x il how far it is from each of two adjacent walls, and

%ﬁ tell its height from the floor. Again, to locate a collision
{:}) tween two airplanes, we would give the ground location, us

in Fwo-dimensional or plane geometry, and also the height at
which the collision took place.

For such purposes we have, instead of straight lines of reference,
three plancs of refercnce. We do wse three straight lines, called
the co-ordinate axes, but they are simply the intersections of
the reference planes. For convenience, we assume the reference
blanes to moet at right angles,

150
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The distances {rom the three planes arc ecalled z,y,7, respec-

tively. These arc measurcd parallel to the corresponding axes,
0X,0Y, 0Z.

A natural and pertinent question is, “How can we make a
drawing on paper that will help us to visnalize the situation
a5 it exists?”’

QN
FIG. 922@5 CO-ORDINATES.

Consider Fig. 92, inghieh the z- and z-axes are assumed in the
same relative p @)ns as the z- and y-axes in plane geometry.
A fair illuf_-;t.r@ is the corner of a room, in which we face
the right o@N¥which represents the az-planc. The foor repre-
sents t w-plane. The interscetion of the left wall and the
floor jalle y-axis. As we look at this, gince 1t oxtends toward

' @ts of length on this axis appcar shorter than equal units

g either of the other axes.

A convenient drawing is one in which OY makes an angle of
120° with (2X, and the units on the y-axis are half as long as
the corresponding units on the z- and g-axoes.

Then, to locate a point {x,y,2) we measure the distance OM = z,
MN = y, parsllel to the y-axis, O {remember the foreshorten-
ing), and NP = 2, parallel to the z-axis, 0Z.



¥

152 RECTANGULAR CO-ORDINATES IN THREE DIMENSIONS

With a little practicc this can be done very rapidly, and the
imagination picturcs the point P as standing out away from
the plancs.

It is essential to have all lines which are assumed parallel
appear as paraliel in the figure.

1

By common consent; unless it is explicitly stated othervwisg
BN

positive z is measured to the right, pesitive y towap
ohscrver and positive z verfically upward, &

EXAMPLE. Locate the three points, (3,4,2), K\‘%y —-1.2,3),
and draw the triangle having these points as vertu

For the first point, we measure 3 units along O‘@mts parallel to OF,
and 2 units vertically upward.

Ior the second point, we measure 1 ‘\to the right, ! unit parallel
to OY, but in the negative dircction, bchmd the xz-plane, or away

from us, and 2 units vertically d@{\ a.ul

For the third point, we me: i unit to the left, 2 units in the positive
y-direction, and 3 uniti&'hcaﬂy upward,

Joining these th%s\ga\nts, we have the required triangle (Irig. 93).
Q}Q}
\{} (-1,2,3)

~?$\ -
Ny

{1,-1,2)

FIG, 93.
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EXERCISES

Loeate the following points by the method suggested in the text:

L.

2
3.
4

(],2,3), (19'"21"'3)} (“2J_2)3)‘
(3,4,-2), (—3,4,1}, (3/2,~6,-2).

(0,3,1), (2,-4,0), (v13,0,0), (—VI7,—v12,-v/7).

Which of the co-ordinates of a point {z,,z) must be zero if the point

lice on the z-axis? On the y-axis? On the z-axis? In the zy-plane?

1n the yz-plane? In the zz-planc?

Muake a table of signs of the co-ordinates of & point {z,y,2) for each of

the clght octants, ®, <\

From geometry we know that the foot, @, of the perpendicular {rg ,\
& puint, P, to a plane, is the projoction of P on the plane, What

the co-ordinates of ¢, if P(zy,2) be projected on (a) The zy- .7

{(#) The yz-plane? (¢) The zz-plane?

Read the co-ordinates of the projections of the points of Fwdrtise 1
upen the zy-plane, of Exercise 2 on the yz-plane, and cise 3
upon the zz-plane.

XiL2 DISTANCE BETWEEN TWO POINTSN

Consider the two points, P4(2,2,2) and @,4,4). If we psss
plancs through these points paraliel t ‘@ reference plancs, we
have & parallelepiped, as shown ins‘. . 94. Since EP; is per-

z

¢ /
ST

N2
¥
F1G. 94—DISTANCE BETWEEN TWO POINTS.

pendicular to the plahe PARS, it is perpendicular to the line
P,R. Thus P.&P: is a right triangle. Then, according to the
Pythagorean theorem,
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(1) PPy = PR+ RP;.
But
RPQ,:JVQPQ*LVlPl:
Hence
PR = Np?\rg= (5"-2)24- (4— 2)°= 34 22 = 13,
Then ,<\\
2 PP? =2 P4 22 =17. \
(2) et + P+ &Q

This i3 an illustration of a general method of finding istanee
between two points, of which, incidentally, the dj 9 formula
in two-dimensional geometry is a special ease. &

We think of the two points as Pl(:cl,yl,z&d Po{zs,345,24). The
figure resembles that of the tllu%traho@b before, the triangle

P\RPs is a right triangle
(3} P;Pz = PR +RP\§% SE -+ RP«,
= (x2— 11)° 2= )+ (2 — 202
K
d= 4/(@ SN2+ (2 — )+ (m — 2

This is the gen{rr%}}r rmula for the distance between two
points. If z = Z‘z‘{{{ ormula becomes exactly that for distance
in two dimens

EXAMP%Qh(}W that the triangle A (3,4,2), B (1L,—1,~23}, € (5,1,3) is
isnsce]g
,(\\ .43 =@B-1DP+dE+ 12+ @24 22-= 45,
BC ={(1—-35)4(— I—-1P4(—2-3812=45
0 ()A =(B3-5°+ (2 — 1+ (2-3)2= 14,
Since 4B = BC, the triangle s isoseeles.

EXERCISES
Locate the following pairs of points and find the corresponding distanees:
L (1,43), (527).
(—8/4,2,1), (5/4,~4,7).
(5,8,4), (~1,0,12).
0,-9,—2), (0,0,—10).

Find the length d of the radius vector (distance from the origin} of
the point (z,3),2).

LIS
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6. {a) Locate the points 4(2,4,0), B(54,0), ¢(5,2,0), and find the co-
ordinates of a point D, such that ABCD is a rectangle.
(b) With thiz rectangle as a lower base, draw a parallelepiped
ARCDEFGIH of height 4% = 6, and find the lengths of 85 and DF.

7. Show that the triangle 4{—2,1,3), B(3,60), C(4,—-2,5) is scalene and
acute.

8 Show that the triangle A(-2,1,3), B(0,1,1}, (4,—2,5) is a right
triangle,

9. By means of Formula {3) examine the following sets of points for
collincarity. Draw the graphs.
Ea) (2,6,0), (4!2r2_)1 (5!'*2;4)- PN Q
h) 50’4'5)’ (6,0,6), (9,—2,5)_ \

(¢} (ab,c), (20,2b,2¢), (3a,3b,3c). o

19. Locate the points (1,6,5), (4,2,7). Find the co-ordinates of the nﬁg
point of the segment. Give reasons. 0

11. BDerive formulas for the mid-point of segment (9,571,210 (Taliaien-
12. Find the lengths of the medians of the triangle A(0,4, 5,0,00,
{0,0,6). &

X3 DIRECTION COSINES ”\‘\Q

The angle between two lines that do not m¢aMs, by definition,
the angle between two lines through g@',‘ﬁ; and parallel to the
given lines. Eb

A directed segment PPy makciigﬁ.l angle 8P\P; = o with the
t

r-axiy, and angle 8= AP h the y-axis, and an angle
y = TP.P, with the z-axig{d1g.

W
a5).
EPAN
é $)

O ;

¥
FIG. 95.—DIRECTION COSINES.
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These three angles are called the direction angles of the ling
containing the scgment Pil?. The angles P8Py, PLAP, and
PTP; are sll right angles. ‘Then from trigonometry, -

IJ]_JS Lo — Iy
0 bR PP,
cos g T B yr
P]_Pz P1P2 Y <\
PlT da — 2 ~\
A S T O

We find these quantities, called the direction casifies of the
line PP, more convenient for use than the actual I, just as,
in two dimensions, we found the slope mo nvenient than
the direction angle. The direction cosines | are negatives
of those of P,P,, ' 6

If we square the members of {1) & h@d, we find the identity,
(2) : cos? o COH2@-§E‘2 vy=1.

Evidently, then, the djr;@cosines of a line are not inde-
pendent, but if any tw e given, the third is determined
except as to sign. /\(\

If the angle v = 'g,}the line is parallel to the zy-plane. But
in that case, nd g are complementary angles, and hence
cos 8 = 5 Q) t is interesting to note that we might have
used direc]@n cosiues in two-dimensional geometry instead of
slopes, is were done, we would see with added emphasis
that-,\ -dimensiongl Beometry is a special case of three-
digpdwmsional geametry.

@(AMPLE. Find the direction cosines of the line joining the origin
to (2,3,4).

2 3 4
(‘.{}er=—::(‘-05.3=—: 008 y = — —-
V29 Vg’ V29
EXERCISES

Draw the lines determined by the following paire of points, find the diree-
tion coslntes, and indicate the dircetion angles in the drawing, the points
being taken in the order given:

1, (0,0,0)1 (1;3:7).
2, (0,0,0, {--2,--4,5/2),
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3. (2,6,5), (4,2,8).
4. (=347, (1,2,3).

5. What are the dircction cosines of the z-axis? The y-axis? The zaxis?
6. What are the direction cosines of a line perpendicular to the zy-plane?
The yz-plane? The rz-plane? The z-axis? The y-axis? The z-axis?

7. {lan the direction cosines of a line be 1,1/3, and 17
8. Tind the remaining direction cosine:

{a) cos § =0, cos v = —+/3/2, ais ncute.
fb) ros o = 173, cos 8 = 1/4, v is obtuse.

0. On the line through (0,2,3) and (4,—2,5) determine a point for which <\
xis 3.

10. What can you say of the dircetion eosines of a line parallel to t Q’
gy-plane? To the ye-plane? To the ze-plane? To the z-axis? To
y-axis? To the z-axis?

11. Using vour knowledge of direction: cosines, determine the pgsifion of
the line theough the following pairs of points, relative to t pated
plane or axis:

{a) (3,5,2), {(—5,6,2}, wy-plane, z-axis. .\<§
(8 (1,—4,7), (--1,—4,3), zz-plane, y-axis. \\
(¢} €3,5,2), (—5,5,2), z-axis, ye-plane. \>

Xll.4 ANGLE BETWEEN TWO ur\% ‘\{2}

Consider two strailght- lines OF, OF', w mntersect at the origin,
making an angle 8 (Fig. 96). Lot t@ii‘ection angles of the two

Jines be a, 8, v, and o, § ¥ " i a poerpendicular drawn
from P to the line OF, fro » right triangle OP'P we have

(1) = OP cos 6.
The projection of P %& zy-plane is N, and the projection on

O

Pl

FIG. 96.—ANGLE BETWEEN TWO LINES.
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the z-axis is M. Let the foot of the perpendicular from M to QP
be R, and let S be the foot of the perpendicular from N to OF,
According to trigonometry, the projection of any line segment
on another line is the length of the segment times the cosine of
the angle between the lines. Since OR, RS, and 8P are the
projections of OM, MN, and NP, respectively, on OF’, we have

(2} OR = OM cos o,
BS = MN cos B’ ¢ <\
SP' = NP cos v,

Note that MV is parallel to the y-axis, and NP is ps,ra@&to the

z-axis. DBut y.
A\
3y OM = OF cos a, (b

MN = OP cos B, \\‘<§

NP = 0P cos . \>
Then, sinec 0, R, 8, P’ are on the sang%ne,
(4} OP'= OR+ RS+ 8P'= OM wé + MN cos 84 NP cos v/,
or, on substituting (1) and (3XY (4},
(5) OPcosf=0OPoosa cu@’—i— OF cos 8 cos 8’ OP cos v cos ',
Dividing through by @\ommon factor, (3P, we have,
(6) cog § = ﬁ{g 008 a’ + cos 8 cos B+ cos vy cos v'.

EXAMPLE. Q in two ways that the triangle 4(—4,2,—5),
B(42 1 @ —1,3} is a right triangle,

'r@mn cosines of AR are 8/\/80 0, 4/\/80 those of BC are
; 3/\/29 — 4/\/)9 those of A( are 6/\/10() — 3/\/109

109

8:24+03+4(-4)
VsV

Formula (6) gives coz B = = 0. Thercfore B is &

right angle.
For a second proof,

- —2 —3 —s -— —
AB =80, BC =20, AC = 108, 4B + BC = 40",
Therefore the trian gle is a right triangle.
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X1.5 PARALLEL AND PERPENDICULAR LINES

If two lines are parallel, they must have the same direction
cosines, In order to avoid ambiguity, we may assume that the
poditive direction on any segment is that in which z is increas-
ing. Thiz would imply that cos y is positive or zero. If 2 happens
to be constant, we may choose the positive direction as that in
which ¥ increases.

«\
By this convention, in the illustrative example of §XII.4, s\
AC and AB are positive, but BC is negative. &g

This convention enables us to determine which of two 5{ &-
mentary angles we get when we apply Formula {6). &(b

If two lines are perpendicular, cos @ turns out t@zero. Con-
versely, if cos 8 = 0, we know that the lines % erpendicular.

EXERCISES a
Find the angle between the lines indicated by, theXollowing data:
i V3 o N\
1. cosa =3 eas § = —5— CO8 Y =0, SS

AV

r 1 r_l ’ 5_
eO% o =—\_/§‘ cos 3 Y coj<\— 3

2. coRsa= g eos § = tuse.

o8 @ = TI/E cosé%%-

3. (0,0,0), (4;2} ]
(0!0!0)! (_@ -
4. (2,1,3) (% £5)]
(_4! 4%\ )0) 12).
5. (_ ¥ ) (]y"‘-"ys)!
, (2,10,
faw the quadrilateral A{—34,5), Bi{4,30), C{7,4,2), D(0,0,7), and
show by means of direction cosines that the figure is a parallelogram.
7. Tnploving the theory of §XI1.5, answer the following:
{~) Iz the figure of Iixercize 6 3 rectangle?
(b) Isit a rhombus? et D bet
8. i he diroction cosines, show that the line scgmen i between
LUhSénmgi?i-lgoi;“lTs olf zides 473 "and BC of the triangle Ai0,6,6), B{9,6,0),
€'(5,—4,1) is parzllel to AC and that the median through B is per-
pendicular to DE. ) ]
9, Show that A(6,7,0}, B(3,1,-2), C(8,4,6) are the vertices of a right
triangle. )
10. &how that A(4,2,4), B(10,2,—2), £(2,0,—4) are the vertices of an
equilateral triangle,
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Xl.é VOLUME OF A TETRAHEDRON
Consider a tetrahedron PiPoPyPy, shown in Fig. 97. The vol-

&

N

Q
«©

R

. 97~VYOLUME OF A TETRAHEDRCN.

ume,@IPgPaP4 cau be found by adding the volumes of the
%@ﬂted triangular prisms, PiPoPyN \NoNy, PP PN NN,

PN N N; and subtracting the volume of PoPyP.NoN oV s

The volume of a truncated triangular prism is the produet of
the area of a right scetion by one-third the sum of the parallel
edges. Since the parallel edges are perpendicular o the ey-plane,
the right scctions are, NINeN3, NONGN,, NUNGN,, NoNGNL
The parallel odges are 2, %2, 23, 24. Then the volume of the first is,

., 10 i
(1 PiPP N NN, = 2 23 e w1

|$3 iz 1
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Similarly for the other truncated prisms.

Then the desired volume is

I.’Bl ih II‘ T th 1!
st 2tz za+ etz
(2) PiPoPsly = ar=2Te Tz Yz ‘ + ﬁi4 ng Yyl
T3 Ys ll s Y L
. . |
21+ 211 %2 2y 1 2a -+ 2zt 24 T2y 1
- e [T Y4 L — p T3 Y32 1.' . (\
Lo Yo 1 T4 Y 1] Q’\
But this is equivalent to the determinant 0&
Ly, g 1 224 25+ 24 {b'\“%’
1 2
3) 1|z g 1 oant 2t 24 &

6lesys 1l 2t 2tz '\‘C}

5494131+32+33 \).

Tnterchanging the last two columns and ﬁ%ﬂg gigns in the
new third column,

: by 41 —2 -\?&; l
%xz Yz — 2 Za 1.
@ lTa ¥ —Z&zz -zl
A y@x —n-al
If we multiply the ]a&éq@umn by # + 2+ 2+ 24 and add it
to the third, the yhlué of the determinant is the same and

expresses the v% of the tetrahedron as

Tt &1 15
Tz Yz &2 1
Tz ¥z 23 1|

t]

1
»XQ PP =

(8) <

0 Ta Ys B _
@ student should carry through the proof for other gpecial
cases, such as when N falls outside the triangle NN N4

If the four points lie in the same plane, the volume of the
tetrahedron is zero. IHence the vanishing of the determinant
in (5) may be taken as a condition that four points be coplanar.
We sometimes say that then the points are linearly dependent,
which simply means that all four sets of co-ordinates will
satisfy the same linear equation in x, ¥, and z.
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EXERCISES

Find the volume of the following tetrahedrons, whose vertices are the
given points:

1, (_1!2!3)1 (511:0)= (2}4')8)! (3;_6!0)

(0,0,0), (58,0, (5,0,6), (0,4,3).

0,1,2), (~4,50), (3,3,11), (2,5,12). Interpret the resuit.

Test for linear dependence. (1,1,0, (0,2,3), (—2,-1,6), (0,0,1).

Are the points (0,0,0), (—2,3,1), {1,0,5) and {—4,10,10) lincarly de-
pendent.?

Find the value of z for which the points (0,0,3), (3,2,3), (x,0,5), (0, 0
are coplanar, o

7. Find values for 2, y, and 2, such that rach of the correé.pondi]:@g}nts

bl

&

(z,y,2) ure linearly dependent, with {0,1,2), (5,1,0), (4,3,1). are
all these (z,y,2)-points located? 0

Sy
SUMMARY OF CHAR@%I
~ Distance between two points P, P, \)\>
4=V Ul e w
Direction cosines of a line PLP$ .&

cos ol %~ &)

o
> €os® o+ cos? S+ cos?y = 1
O

?’t}between two lines

0 €08 § = cos o €OS ay -+ €08 8 ¢os B, + cos Y1 CO8 vq

Volume of 5 tetrahedron Prp.pP,

X1y 2,1

Vz} XaYa w1
6 Xz l251

X Y241
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THE PLANE

O
&
A
>

P
&
N

X1 PLANE THRO&f& THREE POINTS

Three points nof Gﬁ\ﬁ. raight line determine a plane. If the
volume of a tetralddron is zero, we know that the four vertices

lie in the sam @ne. Also, if the fourth point lies in the plane
determined (@he other three, the volume of the tetrahedron

is zero. \0
\ .
The;ﬁ\’c may say that a point (x,y,%) will lie in the plane deter-
@d by (auynz), @sysa), (Fsyezs) if, and only if, the
thme of the tetrahedron with these four vertices is zero.
But, from §X11.6, this means that

!x Y 2 }
A
; =0
(1) ol
X3 s & 1
and this is the equation of the plane.

163

&

O



164 THE PLANE

EXAMPLE. Determine the equation of the plane through the three
points (2,1,5), (3,2,1), (5,1,2).

;?fi 51 2s1 PJ1J plq

32il=ﬁ211—y311+z32W—L32h
B e x

5121 21 521 511 |51

=—3dr— 9%y —32430=0.
. . N\
If we divide through by —3, we have the equation \\
z+3Aqy+2-10=0. 0&

XIlL.2 SKETCHING THE PLANE Ny

In drawing the sketceh of a plane, there are tgt&incipa] cases,

which are illustrated in the following cxamplde? In one case the
plane cuts the axes at points not at the m@ n and in the other
the plane passes through the origin. g

EXAMPLE 1. Draw the plane 3:;5&’% 2z = 6.

A
{\ .
O
(&é
~§$\\0 0 Al2,0,0)

FIG. 98.~~EXAMPLE 1.
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Sinee the plane does not pass through the origin, the traces, or lines
in which the plane cuts the planes of reference, show the plane very
clearly (Fig. 98). These can be found by joining the points 4, B, and (',
in which the plane meets each of the co-ordinate axes.

EXAMPLE 2. Sketch the plane 2 — 2y — 2= 0.
Since this plane pusses through the origin, it is more difficult to see the

plane as shown by its traces. The threc-dimcensional character can be
brought out (as in Iiig. 99) by drawing two of the traces and that in

F .@-—EXAMPLE 9.

which the plane cutsép e parallel to one of the reference planes:
(K, OL, and KL @

The equation , the trace in the zy-plane, iz obtained by setting
z=0in tfr\gamtion and the trace O by setting ¥ = 0.

EXA@ 3. Sketch the line of intersection of the planes

00 z+2y+2—4=0

Qe+ Yy—2— 4 =0
The traces of the two planes in any co-ordinate plane intersecl i_n a
point of the common line. If we join these points we have the desired
line, MPN (Fig. 100).

To obtain the co-ordinates of Py the point at which the line cuts 1.;he
zy-plane, we set 2= 0 in the two equations and solve tl.le resulting
equations simultaneously. M and N are found in a similar manner
by setting « = 0 and v = 0, respectively.

D



166 THE PLANE

cio,2,00

R{04

(0,0,-4)

&

b FIG. 100.—EXAMPLE 3,

< EXERCISES
1. “fri ustion (T} of §XIII.t in the form Az + By 4 Cza4 D =0,

eferminants are represented by the cooleionty?
the equations of the plene determined by the given points:

W
2, R
<(\aJ. 1,0,1 - (0,0,23, (1,1,1).
0{:}@ (b} ((2,1,—?2), (0,1,6), (0,0,2}.
3

© (L,1,0), (-1,-‘3.0), (5,—2,0).

Determine whether the following sets of points arc coplanar:

fa) (0,1,--2), {1,1,1), {0,0,4), {1,2,3).

(k) (2,1,4},'(0,0,1), t1,1,3), (2,2,5).

Sketeh the following pairs of planes, and draw their intersections:
z+3y+22—6=0,4x+2y +z--12 =1,
2x—y+4z—8-——0,9:—y—2z=0‘
4x+y—-z=0,$—2y—3z-——0.

2% -+ 3y + be =6, 3z + 2y + Bz = 6,

S
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7. Sket-ch_ the following planes, and describe their position relative to the
co-ordinate planes:

ajr=0Cy=0,z=10.
(b)x—~4=0,y+z=0,z—%=0.
(¢} 3 —y=0,8z+2¢y -6=0,y — 22+ 4 =0

X3 NORMAL FORM OF THE EQUATION OF A
PLANE

Consider the line, 0P, of length p and having direction angles «, ’\<\
8, 7. The line, OF, where P is any point in the planc perpendicu-A »
lar to OF, at Py, is projected into the Iline OFP, (Fig. 101). (A ] &g
perpendicular to a plane is perpendicular to any line iny
plane through the foot of the perpendicular.) "b&

\§

N\

e
FIG. 1 QNC)RMAL EQUATION OF A PLANE
If we & » the analysis of §XIL4, noting, as we do so, that
OM Q¥ UN = y, NP = 2, we have the equation
zeose+ycos B+ zeosy =D

Since this econdition must be satisfied by the eo-or(.linates of
any point in the plane, it follows that (1) is the equation of the
plane.

The observant student will notice the similarity between this
dovelopment and that of the normal form of the cquation of a
straight line in two dimensions. Wc call this the normal form
for the equation of the plane.
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When v = %/2, the ztorm is missing, and then the equation
looks cxactly like the two-dimensional equation (replacing
c0s 3 by sin «, since @ + 8 = »/2). It must be interpreted, how-
ever, as the equation of a plane parallel to the z-axis.

To every plane there corresponds a unique set of dircetion
eosines, namely, those of the normal, OP,, drawn from the
origin to the plane which may be called the direction cosines
of the plane.

| N
Since Equation (1} is of the first degree, and since %ne 1%
any plane (p might be zero without affecting the gn¥lysis), we
say that ﬂ

The equation of any plane is of the ﬁrst,d@be in x, y, and z
EXAMPLE. Write the equation of the (@3 whose normal makes
equal angles with the three axes zmd@f ength V3. (Fig. 102.)

O

HG. 109,

Bince cos a = cog f# = ¢os v, and cos® a + cos® 8 + cos? y = 1, we find
that cos & = ]/\/3_

Then the desired plane ig

2

SN A A
V3TVt T Vs
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or, if we elear of fractions,
z+y+2z—3=0

EXERCISES

Write the normal form of the equation of the plane determined as indieated,
and reduce to the general formaez + by + ez +d = O

1. «=60° 8 = 60°, 4 = 45°, p = 5.

2w 120° 8 = —45°, v = 60°, p = 4.

3. a=0°§8=90°y=90°p =3

4 o« =120° 8 = ~30°, v = O0°, p = 5.

5. a=120°8=45% v = —6B0% p = 3.
6

(B sy ()0 o@’

Fram your knowledge of dircetion cosines first determine t n of
the planes given by the following data relative to the co—o nes
and axes; then write the equation of the plane in t.hc general

7. c.05a=\/31_3»0055=—\72§"3057= &
8. a=gpf=py-0p=3 ‘\(b
9@ oa=0,5= 27—'2}'3—0

=]

10, =5 ,S—-('oa:,—l( 3) ¥ = Q08 @é =

11 CO“}a.LOSﬁ cozy =1:—-4;

XIil.4 REDUCTION TQ?QORMAL FORM

Consider the most ,gé(éra equation of the first degree in z, y,
and z:

{1 éQ)Ax+By+Oz+D=O.
If we ca @lucc this equation to the form (1) of §XIIL3, we
know tHghit represents a planf-

@Q‘:‘ divide throughout by a constant &, to be determined:

A B ¢ D
= — - — = 1§,
(2) kx+ ky+ kz-l- k

If this i¢ in the normal form, the cocfficients of z, y, and 2 are
cos a, cos B, and cos v, respectively, and hence must satisfy
the identity

(3) costat eost f+ eogty = 1.

&
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1f we substitute and solve for £, we get
@ - b=x VAT By e

In conformity with our practice in two dimensions, we chonge
the sign of £ opposite to that of D, %o that OP; is always consid-
ered as a positive mumber. Tf D happens to bo zero, we choose
the same sign as that of (.

« N\
When we insert the value of %, Equation (1) is reduced &\thc
desired form, and hence we know it represents a, planeﬂ ! say,
therefore,

O
Any equation of the first degree in x, y and z r%@&nts a plane.

The numbers 4, B, € are proportional to*@dimction cosines
of the normal line and arc ecalled dir%}bn numbers of the
normal to the plane. ‘\(b,

EXAMPLE. Reduce the equation Q

12x,+@¥35= 12
N\

Here k= V128 + 42 —{—5{: V169 - 13. Hence, the desired equation
i3

to the normal form.

‘\‘\{%x—ké-t—-‘—az———(}
BT TRt T
h

Y .

i 4 3 12
08 & = —

Henee w
\0 13 €08 8= 15 COR Y = — Lj_’ and p = ]3‘
@.5 DISTANCE OF A POINT FROM A PLANE
wo planes thaf are parallel have the same dircetion cosines .
for the normals except as to signs. The cosines of the two nor-
mals have the same signs when the Planes lic on the same side
of the origin and opposite signs when they lic on opposite sides
of the origin.

Consider the plane
(N TeoSat yeos B4 zeosy — p =0
and the point, {zy,y1,21), shown in Fig. 103.
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(}{b FIG. 102,

A pla{gﬁmll\el to (1) must have an equation of the form
0 xcosa+yr:osﬁ+zcos-}r—p’=0,

where ' is the perpendicular distance from the origin to the
new plane. Now let us make this new plane pass through the
point (x1,y1,2,). Then these co-ordinates must satisfy Equation
(2), and we have

(3) P’ =z 008 a+ i cos B+ 208 T,

where p’ is positive or negative accordingly as the planes are
on the same or oppesite sides of the origin.
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The distance from plane (1) to plane (2}, [and consequen tly to
the point (x,,3,2,)] is

(4). d=p’~p=x1c05a+ylcog,8+zlcos~y—p.
Then, as in the corresponding problem in two dimensions, to
find the distance from the- plane to a point, we neced mercly

reduce the cquation to the normal form and substitute the
co-ordinates of the point.

N
EXAMPLE. Find the distance of the point (3,2,—1) fro ébpmne
3r—4dy+62412=0, ‘3’%
Changing to normal form, k = — V61, (g

;3x+—4—y+:ﬁ—z =1
61 Vel Vel 31

Substituting the co-ordinates of the w\we find
— 9 8 12 -7
d=—'—_+——“+ — = = —
VL Vo oWt Vel V61
and, since the algebraie si ﬁed out to be negative, we know that

the origin and the point ’8\2,— 1) are on the same side of the plane.
' AN

EXERCISES
Reduce the followﬁ(éequatis:ms to the normal form and find the direction

cosines and the Yangth of the normal for each plane:
L x— 3y 3 =0

2. 2z 4 bz —4 =0,
3. 4y —1=0,
4. —z=,

5. Sy tz=1,
<\x‘+y+z=1.

0 » T 4-by ez +d =0,

Find the dlistacn_ce of the indicated point from the given plane and state
whether this point and the origin are on the salne or opposite sides of the
plane. Draw the figure.

8 (3,~2,2,% —y~z246=0q

9. (LL5), 2043y —z—4n~0
20. (10,0,3), 62 + 2y — 32 — 30 —
1. {~6,0,2), 20z — 125 - 152 — 60,
12 (1,L,1),2x+8y—z2—4 <0,
13 (0,0,0), 5z + 3y — 122 + 60 — 0.
4. (00,00, 2 +y+2-=1, .
15, (1,2,3), 82+ 3y + 2 == 0,
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Xlil.6 ONE-POINT FORM OF EQUATION OF PLANE
Suppose a plane, with direction numbers A, B, €, passes
through a point {(z,y1,21). The co-ordinates of the point must
satisfy the equation of the plane, and so we may write

Axi+ B+ Ca+ D =0.

ence

(1) Az 4 By + Cz = Az + B+ Can

Sometimes the equation is written &g»
(2) Az —2)+ Bly— ) +Cle-z2) =0,

3

although, in most cases the first form is more useful. (bﬁ‘&i
If instead of the dircetion numbers of the nom@thc plane,
we use the direction cosines, the equation is \>
(3) (x—x)eosa+ (y—y)eos B+ @Q%OS v =0
EXAMPLE. Write the equation of the with direction numbers
af the normal 3,4, b, and passing thr the point (2, —1, 3).
The cquation is, according to (Ll{&

3z + 4y + 5{5\}2 + 4{—1} -+ 5-3 = 17.
Tf we use (1) the for o‘lﬁgﬂse cquation is

3%2))+4(y+1)+5(z— 3) = 0.

X7 INT FORM OF EQUATION OF PLANE

Ome of \& simplest equations to write is the equation of a
plane S%h known intercepts, i.e., a plane through the points

é Y7 (0,5,0), (0,0,0). Ttis
r oy 2
T4l =1
a a+b+c

If we substitute the co-ordinates of these three puints, we sce
that they satisfy the cquation. We can, of course, derive the
equation by applying the three-point form (§XITL.1).

The intercept form of the equation of the straight line in two-
dimengional gecometry is & special ease of {1).
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EXAMPLE. Write the equation of the plane with intercepts 2,4, 5
respectively,

ety i,

2 4

k2 I 5

If we reduce to the general form, we have

10z + 5y + 42 — 90 = 0.

EXERCISES « &\
In Exereiscs 1-8, the direction numbers of the normal to the plan (&he
irection cosines) are given, as well as & point on the plane. @’c the
equation of the plane.

2. 1,-34; (1,1,0).
3. 40,-2: (200 "é
\§

4. 2,34;(0,3,-1/2). \0

L 1,35; (61,2), “330

5. 6,-1,0; (1/3,8,—3/4). N
6. 1,-3,7; (0,0,0). \§\
7.0 1/21/2,1/4%2; (1,2,8). (&
8. 1/3,-2,3,2/3; (0,—1,6). S

9. A line passes through the origin \che point P{1,2.5). Write the
equation of the plane perpendi te this line at . Reduce to the
general form. ‘$ g

10.  Tind the equation of a pla rough P(3,0,4) and perpendicular to
the line through F gnd {h tgin. Diraw.

11, Draw the plane throw 1(—83,—4,5) perpendicular to 08, Deter-
mine any other p:)inz\Pg, in the plane, and show that PPy s por-
pendicular to O, (\

Find the intercept fm@of the equation of each of the following planes.

Reduce to the gendefl i, Check results,

12, peintercept, 2 Yy-intercept = ~3, z-intercept. = 6.

13. x-interce% s y-intercept = 2/3, zintercept = —4 /5.

14, x~inter¢P = B/, y-intercept = 7/8, wintereept = g/p.

15. z-in;a bt = 5, y-intercopt = —2, plane passes through (1,3,4).

16. P asscs through (2,0,0), (0,2,0), {0,0,4).
N
THE STRAIGHT LINE

0®,‘-onsider the two equutions,

{1 t+3y+ 2= 8,
3k 4y — 22 = 12,

Il

Any point whose co-ordinates satisfy both equations must be
femmon to the (wo plancs (ABC, DEF in Tig. 104) and
hence iz a point on the line of interseetion (MPN). Tor this
reason, we offen spesk of the two equations as the equations
of the line.
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S
N
O

~s§\ 4
P
FIG. 104 —STRAIGHT LINE.

Thus, in Example 3, §XTL1.1, we were drawing the line whose

cquations are
(2) e+ +z—4=0
2+ y—e—4=0

At times it is necessary to find the direction cosines of a line

when the equations are given.
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Sinee this line lies in the planes, it is perpendicular to the
normals to these two planes. If 1, 8, t are the direction numbery
of the line

(2) T+ 2y +z2—4 =0,
2x + ¥—e—-4=0,

the condition for perpendicularity (§X11.5) gives us two equa-
tions; .
- N
(3) 1r+2s+1 (=0, Q
2r+1s—1¢=0, Oﬁ

From these we find, by solving for ;IJ : {b{%
VAN
I ! ; Fo : X
(@ ris:e=2 1, _j1 IJ-'I 2=._\3}§;}; —3=1:-1:1.

117 T2—1]t 2 1
In general, the direction numbhersg &%f a line

(5) A+ By + 8+ D, = 0,
A+ Bzy&z—i- Dy =0,
are given by ‘$

1 H | v | !
v B Cy . 4,0 Cidr By
T.S.OK ‘B? CQ|'_-i-A202"JAQBz

\
XIS INTERSERTION OF THREE PLANES

In genor @ree planes deternine g peint. Finding the point
when thd\dyuations of the planes are given, is a problem in
simu ous linear equations in algebra,

(6)

@9@&5% that arc labelled inconsistent in algebra are those
0 which the three planes are gl parailel to a single line, thus
0 forming the three faces of g triangular prism, and hence have
no finite point in tommon, or two of the planes are parallel

but not paralle! to the third,

EXAMPLE., Txamine the relationship of the three planes

T+ ¥+ 22=6
3:::+2-3;-—22=6,
a4 3y + 0z = 6.
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1 we solve for z, by determinants, we formally obtamn

6 1 2
6 2 -2
8 3 0 36

= L=
11 2 @
‘d 2 -2
13 o

Henee the equations are ineonsistent, since no value exists for z. ‘&’\\

Graphing, we find the three lines of infersection are parallel (Fig,
The plane ABC, represented by the first equation, intersects eéher

\0 ' FIG. 105.

ty nes, DEF and PQHG, in the parallel lies P@ and RS. Like-
0 TV is the intersection of the planes DEF and PQHG.

EXERCISES

1. Represent each of the co-ordinate axes by the equations of iwo planes,
taken simultuncously. ]

Fingd the direction numbers of each of the lines represented by the {ollowing
palrs of planes:

2. 24y+z-2=0,2r—3y+z+3=0
24y~ 62—4=0z—3y+ b~ i=0
Jety—4z=2 2y +5z=1
x+2y—7z=ﬂ,2w—y+7z=3. '
Tind the direction rosines of the bnes of Exercises 2-5.

opn W
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7. Check the results of Ixercises 4 and 5, by finding two points on each
line and, from them, the direction cosines of the line.

8. Do the planes z + 2y + 3z = 0, Tty+a-—-1=0 and 22 — y = 3,
have a common point? Do they have more than one common point?

8. If we denote the equations of Fxam ple 1, §XITT.9, as (1), (2}, and (3,
respectively, show that the lines represenied by (1) and (2), by (I}
and {3}, and by (2) and (3) are parallel, by finding the dircetion
cosines,

10. Determine the relation between the following sets of planes:

(a) x+-22f=_0,y='—32€'z=32-

(b} 2m—33=ﬁ,x+2z—4={],3:1:--|—4-y=].2.

.\(\
1i.  Bhow that the three planes, 2z — 3 +3:-2=0,2z+ 1?—(‘% =1,

and x + 21,3 + 2_25 = 1, intersect in a line. .
i i/ . t\"%
Xill.10 EQUATION OF A STRAIGHT (?—SYMMETRI-
: CAL FORM N

N
Consider the straight line (Fig, IO}é‘[@assing through the
point (2,1,3) and having the directicm\ mbers 2,3,2.

i O

(t,y,2)

FIG. 106 —STRAIGHT LINE,

The dircction numbers of o line (proportional to the direction
tdsines) are proportional to the differences of the co-ordinates
of any two points of the line. Suppose the second point, any
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point of the line, to be {z,5,2). Then we must have,

z—2 y—1 z-—3
1 TR _d L
m 2 3 2

.

This is known as the symmetrical form for the equations.

In general, if the point is (z1,y1,21), and the direetion numbers
arer, 3,1, the symmetrical form for the equations of the line |

N\
ZIVesR ’\\
T — I y_'_ i z — 1 0&%

(2) o

In place of the direction numbvrs, we can, if necea%ﬁm the
actual values of the direction cosines: R

A\
o SETRY: 4

-

&s

[

cog 3 =- -
+ +i

\/r_?
cos 4 = ;& —

5

+
2,
+

EXAMPLE. Reduce t 93\2@1;10115 of the line

s—y+z2+4=0,
é sty +zt+1=0

to the svmme?@ form.

Tty the Q@d of §XTIL7 we find the direction numbers:

@ pigii= —2:—1:3,

Q nd a definite point, choose a value, say, = 1 (any value will do),
en

y—z2="06
y+z=—2

Hfwesolveforyande, ¥=2 £= -4,

Then the equations are
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1,

EXERCISES

In the exampie of this section the result js
r—1 y-2 + 4
I Y e T
State reasons why the denominators —2,—1,3 camot be the dircetion
cosines of the line. What are the direetion cosines of the Jine?
Find the direction eosines of each of the following lines:

Vi

e L o
q

-
a7 EiT RS
ite the egynations of the follow ing lines in symmoetrid £3vn.

® O U AW

10.

Pagsing through {1,2,3) and (4,-1,0). ”Q
Passing through the origin and (14,24, 34). \\
Passing through {3,2,0) and having directigdhumbers 1,5,—-8.
Passing through (4,0,1), @ = 43°, 8 = ﬁ%ﬂ = 607,
2z+y+z+1=0,3a:+2y—-z 3.
Find the angle between the folles oairs of lings:
(a) THy+z—2-0, $BT A+ Yy —z=1,

2:5—y+z+1=0, az =3+ z=0,

— P

(b)z—l—1=:_—"i2~=i%2- hel T =y - oz
Find the equation uNme plane through (1,0,3) perpendicular Lo the
line 3 = ¢ = 2.
Find the cquatig? 1 syauretrie form of the line through (0,1,2)
perpendic ula:ﬁ{f\ ¢plane 8z —dy - 52— 1 - ¢,
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REVIEW EXERCISES CHAPTERS XIl AND X

Draw the tetrahedron whose verlicos are 4 (2,4,6), B (0,6,0), ¢ (6,12,0),

D (3,0,0), und use the drawing in working out the following exercises,

L. Tind the distance from B to the centroid of triangle ACEH.

2. lind sngle B of iriangle ABC.

3. Find the equation of the plune ABC in general, intercept, and normal
form,

4. Find the volume of the tetrahedron.

5. Find the distance of B from the plane ACD. Find the area of triangle * <\
ACD (make use of result of Ixcreise 4), ’\

6. (a) Write the equation of the line 4 8. (Two planes.) (.)
(b} Find the equation of line AB in symmetric form, Q

7. Write the equation of the plane through A perpendicular ‘Qe
Jine AA. ¢

& ¥ind the equation of the plane through D perpe‘ndic@ta the
line AR,

9, If you were told that the equations of the planes D, ABD,
respectively, are 3z — 3y - 22 + 18 = 0, 127 — 3y — 36 = 0, and
bx -+ 3y - z — 18 = 0, how would you check t th of the state-
ment? véhow that these three planes intersect i cint.

10. Find the equation of the plane through Q
{a) line AB and the midpoint of C'D. é
(b} line AC and the midpoint of DB.q
{c} line A7} and the midpoint of 53

11, Show that, in Exercise 10, the li f intersection of planes (a) and
(b) is precisely the line of in tion of planes (b) and (¢}, and
henee that this line is eommo all three plancs.
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SUMMARY OF CHAPTER XIii
Plane through 3 points
*xyzl

Xyl

Xy ¥ 2y 1
X3 Yz 2y 1
Normal form—equation of plane Q’\Q\
xc05a+ycosﬁ+zcosv=p 0&

Distance of point P, from plane {§%
d = x1 €08 & + Yy cos 8+ zw@—p
A+ Byi+ Cat D NN

N

Va4 32+F<'g)

One-point form—equation of plz&

(x — x1) cos & + (y — ;B-f—(z-—zl)cos'y:O
or A(x—~x)+ —#+C(z—z)=0
Intercept form—eql@hn of plane

$<\0 X ¥y 2z
o+ =1
é a b ¢
Straigl‘;é%e
\0 A1x+Bly+ C1Z+D1=0
<\ Ax+ By + Cz+ Dy = 0

B C .
B, G,

!IAl C]_i. . _IAI BJ.

COS @ :COS B : oSy = T — T
osaieosficosy 4, Cy * 4. By

Symmetrical form

IZH _¥-p -1

COS o cos 3 cos v
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XIV

QUADRIC SURFACES

g‘b
XIV.t INTRODUCTION—THE SPHERE %0
how-

In the last two chapters we have secn repeated exa
ing that the geometry of two dimensions is a
three-dimensional geometry. Loci of the sec
erally known as quadrics, offer no excep i
form and idea. ‘\

cage of
egree, gen-
this unity of

distance r from a fixed point { If we apply the distance
fermuls from chapter §X11, ve the equation

1 (z — a) +/Q\— byt + g —ct=r%

For example, consider the Ioewgmt that lies at a fixed

From our knowled {&%Lometry we know that this locus is a
sphere, of radnmémth center at {ab,c). Any equation of the

form (1) rep Ts a sphere, since it states that the distance
of the poing,y,z), from the fixed point (a,b,c) is constant.
EXA . Analyze the locus whose equation is

O 3 4 3yt 32 — 63:—12y—oz+3 0.

;f we divide by 3 and vomplete squares, we have,
, gy (o 7\ 180
— —_ 2 — - = —
(w— 1P+ (y. ) : 2

Therefore, this equation represents a sphere with center at (1,2, 5/6)

and radius 165 It intersects the wy-plane in a circle with center at

(1,2, 0) and radius 2 (Fig. 107).
183
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FIG. $~$—;PHERE.
\)

,(\ EXERCISES
Write the equation o@t sphere in cach of the following exercizes in the
form (1) and redu e general form:
L. Center (1,4 -3 radius = 6. 2. Center (0,0,0), radius = 4,
3. Center %, passing through {1,3,7).
4. Begm ween (—8,4,5) and (7,0,3) iz a dizmeter.
Radi 5, sphere tangent to zy-plane at the origin.
T at (2,4,6), sphere tangent to yz-plane,
ter at (1,2,5), sphere tangent to the plane 2z 4 3y + 62 — 10 = 0.
enter at (&, k, I}, radins = .
L the center and radius of each of the following spheres; sketch, show-
0Z, In particular, the traces in the ce-ordinate planes.
9. 2Pyt gopr o 95, 16, xz+y2+z2-—8y—]02—-8=0.
. 224y 428 —ay 025 =0,
In Exercisos 12-14, determine, without first drawing, the position of the
Zlven point with respeet to the given sphere. Then sketch,
12, (0,—4,9), (z—6)2 4 (y — 472 4 (z—5)F = 4.
B (-2 by e gy = 1o,
4. (0,04), 24324 22— 15— .
15. Bhow that the distance between the centers of
Byt b2 — 10x 4 4 62420 =0
and 2 + 47 22— 1 = 0 is greater than the sum of the radii. What
is the reiative position of the spheres?
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XIV.2 SKETCHING A QUADRIC SURFACE

In sketehing a plane, we found that it was sufficient, ordinarily,
io show the traces in three planes. Tor a more general surface,
something more is required, just as we nceded more than two
points to show the shape of a conie section.

Naturally, one of the first steps is to find the traces in the

co-ordinate planes. Then we draw the traccs in planes parallel *

&

{o the co-ordinaie plancs. We can best illustrate the proc@*

with an cxample,

EXAMPLE. Sketch the graph of the equation {§%
4 4 Oyt 4 1622 = 144, ‘\(§

(lenrly 2* eannot be greater than 36, since th'«@suld demand nega-
tive values for cither 3 or 2% Similaxly, : \@not exceed 16, and #
canmot exceed 9, Every section of the surffcdy'by a plane is an ellipse.
Hence the surface is called an ellipsoide§ig. 108).

FIG. 108 —ELLIPSOID.

The traces in the three co-ordinate planes are the ellipses
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427 4 Qe = 14q

dr? 4 1622 < 144,

9y + 162 < 144,
Traces in parallel planes ean be plotted from the equations found by
substituting numerical valucs for T, ¥, & respectively. If we recgl]
that each such section is an ellipse with the ends of the major and
minor diameters on the traces in the co-ordinate planes, we can locate
these points graphically, and make the sketch with reasonab}e&se

and speed, \
EXERCISES (b
"\
O

1. Given the equation 422 + 92 + 2 = 36,

(a) Identify the quadric. P

(b} Yind the z, y-, and z-intercepts and the length@%the prineipal
diameters,

(c) Find the traces in the co-ordinate planes.

(d) Find the traces in the planes o = 1 th—_)—l, y=1,y=-1,
2=~1/2 = —1/2 \

(e} Bketch the surface,

By the methed of the text, discuss the foll @g surfuces, observing steps
{2} to {e) of Exercise 1. _

2 4 p 16160 3, gg}yﬂﬂuaﬁ.
4 240442 36— 0,
oy gt

) ®qz

—'9+'Z+Z=1. 6. Z\‘%@"iil'

1002 + 160047 + 25622 :gg‘ =0
XIV.3 SHAPE OE’\@UADRICS—{ENTRAL QUADRICS
If & central quaﬁ ® Symmetrical with respeet to the eo-ordi-
nate planes,  yNand 2z oceur only in even powers, Thus the
central qua@ have a standard form,
(1) Qz? + by® + e+ 4 = 0,
who@(zg, ¢, and d are all different from zero,

/}an identify the various central quadrics by the relative
ues of @, b, ¢, and d. As was shown in the example of XTV.2,

0 f a, b, ¢ are all positive, and ¢ is negative, the surface iz an
ellipsoid.

Ifab e dareal positive, therc will be no reg] points on the
surface, which we call an imaginary ellipsoid.

If one or two of the first threc terms in (1) ig negative, the
surface is known ag g hyperboloid,

Let us assume, for the sake of convenicnee, that o is positive
and d negative. Then there will be two possible cases.
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Case 1. The Hyperboleid of One Sheet

Suppose b 1 positive and ¢ is negative. (The opposite choice of
signs, with b negative and ¢ positive, docs not affect the essen-
tial analysis). We shall illustrate with a numerical example.

EXAMPLE, 1. Discuss and sketch the quadrie surface

2 2
—+>=—-—==1 +«\
TRAVIRET A\
Thiz surface docs not interscet the z-axis. Any section parallel to @
zy-plane is an ellipse, similar to the ellipse z*/94 w4 = 1
section by a plane through the z-axis is a hyperbola. Sinee ¢ rface

consists of a single infinite part, it is called the hyperbq@

sheet (Fig. L09).
N
>

O

-

FIG. 109.—HYPERBOLGID OF ONE SHEET.
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Case 2. The Hyperboloid of Two Sheets

Suppose that b and ¢ are both negative, Hore again, we illus-
trate with a numerical example, leaving the student to make
the obvicus generalization,

EXAMPLE 2. Discuss and sketch the quadrie surface

4% — By — 92 _ 36, QO

There are no real points of the surface for which 2 ig } han 9.
Every section by s plane parallel to the ye-plane is u gidle*(in the
general eage it would he an ellipse}. The traces in the zap¥ne and the
y2-plane are hyperbolas (Fig. 110). As we Sugges 1 the case of

FIG, T10—HYPERROLOID OF TWO SHEETS.

OQhe ellipsoid, sections paraliel to the ye-plane can be plotted from the
equations found by substituting values of 2, or the graphic plan sug-
gested there ean be used.

As we noted before, any variation of signs in the equations of
the hyperboloid of one sheet and the hyperboloid of two sheets,
without changing the number of positive and negative signs,
does not affect the essentia) character of the surface, but merely
the orientation with respect to the co-ordinate syatem.



QUADRIC SURFACES 189

EXERCISES
Identify and sketeh the following sitrfaces:

L £+y_ﬂ_f:1 5. -yt —2t=4,
6 9 4 6, — 2 4yE4f =25
5. 22_24_?_2:1 7. dxr 4 3R — 1222 = 48,
4 25 9 ‘ 8. 4x* + 3y — 12: = 48,
3 22_.32._1&21 O, 100z — 4y* — 2522 1 100 = .
4 25 9 ! 10, 22+ —42=1
4, FZ—yPr 42 =4 ¢
L

XIV.4 SHAPE OF QUADRIC—NONCENTRAL ou«@’
RICS e

A nonecentral quadric is called a paraboloid. Of thes t‘%& are
two lypes. Any such surface has two planes %"&mmetry.
10

which, for convenience we will assume toe xz- and
yz-planes. Then If the surface passes throy e origin, the
equation will appear in the form . {2},

(1) ar? + bt + ?12&@
Where a, b, and ¢ are all differen j&&n—n zero,

The iwo essentially diHel‘e{gfgﬁaes appear when we assume
¢ and b to have the same.or opposite signs, As in the case of
the hyperboloids, we I'%illus*a\-f_n:e cach of these two cases
with a numerical 9%@

1. The Elliptic Paraboloid
Diseuss and @ ch the surface.

\{:} 4x? = 2
Tl@ﬁace is symmetrical with respect to the xz- and yz-planes,
e £ and y oceur only in even powers. Any section parallel to

& xy-plane is an cllipse, real if z is positive, imaginary If 2 is
negative.

The surface Hes wholly on one side of the zy-plane and extends

indefinitely in the positive direction of the z-axis. The z-axis

interseels the surface at the vertex.

hrough or parallel to the z-axis is a
hat cuts the surface in a hyperbola.
lliptic paraboloid (Fig. 111).

Any section by a plane t
parabola. There is no plane t
This surface is known as fhe e
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FIG. 111 —ELLIPTI ABOLOID.
Ifa=g, equation (1) ean ho @m:cd to the form
* = mar.

Tt is obvious that any gection made by » — E(k > 0) is a civcle.
The surface is called taboloid of revolution since it could be
generated hy m{a\{ 2 parabola about its axig.

e 2. The Hyperbolic Paraboloid

Discuss a@etch the surface,

(&» T — 2 = 4y,

Siﬁ@ and y ocenr only in even powers, the surface ig symimet-
{K& with respect to the s. and yz-planeg,

0 Any section by a plane through or paralle] to the zaxs is a
parabola, since oceurs only in the first degree.

All sections parallel to the Tzplane are equgl baraholas,

Any plane parallel to {he 44 -plane cuts the surface in a hyper-

bola whose asymptotes are paraile] to the lines whoge equations
are given hy
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ot — gy = Q.
The ay-plane itself cuts the surface in the two lines,

$+y:0: x—y=0,
z =10 z = 0.

Since every section of the curve is either a hyperbola or a
parabola, the surface is called the hyperbolic paraboloid A
N

(Fig. 112). <
z (v Y
O

AS
Fa&@; 9. —HYPERBOLIC PARABOLOID.

EXERCISES
Identify, &@3, and sketeh the following surfaces:
I. Dt —82=0. 6. 252 + 2 - x =10
2. it = 16z, 7. By +2=1
4 Oyt — 36z = O, .8 —F+yr+d=1L
©25y5+z?=25x. : o0 po—2+1=0
5 4 — 2t = 16y. 10, 42+ 9y + # + 36 =D,

11, 42 4 9 + 28~ 36 = 0.
XIV.5 IMPROPER QUADRICS—THE CYLINDER—THE
CONE

The five types of quadrics so far discussed, the ellipsoid, the
hyperboloid of one sheet, the hyperboloid of t“{o sheets, the
elliptic puraboloid, and the hyperbolic paraboloid, are called

proper guadrics.
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The eylinder and conc are often called improper quadrics.
A tangent plane to one of these is tangent along a whole straight
line.

We define a cylinder as the surface generated by a straight
line that remains paraliel to a fixed straight line while one
of its points describes a plane curve.

o

Any section of a cylinder by a planc parallel to its bage has
the same shape and size as the base curve. Thus, il th %er-
ating line is parallel, let us say, to the zaxis, everysection,
z = ¢, 13 the same, That is to say, the value of 2 1 o bearing
on the equation. (This implies that z does nq\»’@fm‘ into the
equation.)

Conversely, if 2 is missing from the eag@b}bn, it can be shown
that the swlace is a eylinder with eherators parallel to the
z-axis.

EXAMPLE 1. The equation ~§§$
d% - 0y = 30,

represents a eylinder 1/\113) whose base curve, in the ry-plane, is

the ellipse having{é\ me equation.

Suppose thatb central quadrie, when reduced to standard
form, has quation:

(1) O{b' azx® + byt + e2? = 0.

“l;@urf ace is a cone, since every planc through the origin inter-
cts the surface in two straight lines, real or imaginary, and any
plane parallel to a co-ordinate plane intersects the surface in a
conie of the same shape, but whose size is proportional to the
distance from the origin.

I'f a, b, and ¢ all have the same sign, the cone is imaginary,
since 1t has no real points other than the origin. (Some people
call 1t a point-ellipsoid.)

If. the algebraic signs are not all the same, the cone is real,
with the origin as vertex.
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~N
™

N
O
’,.._-""'""' | — (\&
po/

\

<dirEak
\._____ X
ST

&
AN
O

é@ FIG. 113.~—CYLINDER.
EXAMPL& Discuss and sketeh the surface,

<\ s+ - =0

&'e were to reduce this 0 standard form, by setting z — 4 = 2/,
¢ cquation would be in the form (1). Henee, the surface is a cone

(Fig. 114) with vertex at the new origin, which is (0,0,4) in the original
system.

-planes are straight lines. The trace in the

4 = 16.

The traces in the xz- and 2
ay-plane is an ellipse, 4zt 4
+q which extend jndefinitely in both

The surface consists of two shee
otion made by the planez = Eke = 4)

dircctions along the z-axis. ANy se
is an cllipse whose center iz on the z-axis,
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X
Y
é FiG. 114 —CONE.
XIV.6 @& GENERAL QUADRIC
Ift uation of a quadric surface is not in one of the standard
f 71t can be redueed to standard form by means of trans-

~$§ tions similar to those studied in two-dimensional geom-
{:} try. We shall not discuss them in detail.

EXERCISES
Identify, discuss, and sketch:
1. 1822 4 252 = 400, 8 42— (y— 4P 4+2=0.
2. P —da =, S 1t - 2 = lby.
3. 435“ -+ 92t = 36. 10, 25z 4 2542 4 £ — 25 = 1),
4. — 92 = 36, 11, 42 —dy + 2= 0.
5. 97,3 + -t =0 12, 3 — 2 = Ox.
6. 22— 4 1622 — O, 13, 22 + 2% = 4y,
oo By - (z— 30, 14. 2% + ¢? — 9% = 36.

15, s*—pr— -1 =0,
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Sphere
(x— %)+ Y —yo)*+ E-z)t =1
Ellipsoid
— xp)? — 2 (z— 20)?
_(x__x_n)+(y yn)+( 0)? _

a’ b ¢t

Paraboloid
(1) Elliptic : ﬁg
- x| @— ¥ _ :
_aﬁ_+ = bT —.cz+d (b«\s’
O
{2} Hyperbolic \\

w-xr W= (D

@ b2 éQ
Hyperboloid \§$

{1} One sheet
x — xu)
Q*
@) Two sh@s

X —x0)? Y-y (z— 20" _
‘&éﬁr‘ S ¢

N
f 0{3’&&{\



a4

126

n nt ‘ NE) ‘ 1/n n w2 V'R 1/n
1 1 1 1 51 2601 7.141 0196
2 4 | 1.414 5 52 2704 7.811 0192
3 9 | 1.732 2333 | a3 2500 7.280 LDIRO
4 6 | 2 25 54 | 2016 | 7.248 | L0185 |
5 25 | 9.936 2 55 2025 7.416 ROTCHE
é 36 | 2.449 1867 56 2136 7 453 ‘0179
7 49 | 2. 646 1429 a7 3249 7550 0175
8 64 | 2328 125 B 3364 7 616 0172
9 &1 | 3 1111 59 2481 7 681 0164
7
10 wo | s.162 1 6U 2600 .01
11 121 | 3.317 “0609 1 3721 D16
12 144 | 3.484 omas |62 asd 1 &1
13 189 | 3.606 o7 |63 3069 0159
14 196 | 3.742 o714 64 1096 T
15 225 | 3 873 .00RT 65 1225 “0154
16 256 | 4 L0625 4356 0152
17 289 { 4.123 0588 L0140
18 | 82t | 4243 L0556 ‘0147
19 361 | 4.359 L0526 0145
20 400 | 4.472 05 0143
21 441 | 4583 L6476 D14l
29 484 | 4.600 0455 8485 0T
23 520 | 4.796 0135 8 544 0137
2d 576 | 4.uub 0417 2. 602 0133
25 625 5 i @‘ 75 562 5,660 0132
26 676 | 5.099 5 76 5776 8.71% EE!
27 720 5.196 RTH 77 54929 87T | NOEN
. ' T
28 784 50028 (0357 78 6084 5,832 ‘ 0124
30 841 | 5.8 0345 | 79 241 8. 858 0127
30 900 (e 0333 | w0 | 8300 §044 | 0175
31 961 W.568 L0323 51 6561 g {0123
32 w2 5.657 0313 2 6724 9.055 | 0122
33 {’Q} 5.745 L0303 8 GREY 9.110 | (120
34 5,831 Jozud | s 056 9.165 | .0L19
35 '&295 5.916 0286 | 85 7225 9,220 D118
; e(: 1296 | 6 o | s 7396 g.274 0116
¢ 35: 1369 | 06.083 0270 | a7 75R9 9.327 | .06
NS5 | 1daa | 6162 | o263 | ss | vrar o 981 | 0114
38 1541 f.245 0256 | w9 7021 0.43% | 0112
40 o0 | 8325 .025 o0 i 9.4n7 | 0L
41 1651 6,403 0244 | 01 0530 ‘ 0110
12 1764 | 6 481 02w | o2 a.502 | 0109
43 1849 | 6.557 L0233 a3 0647 0108
44 1936 | 6.633 ¢ L0227 | @4 9. 693 L0106
45 2025 ' 8708 ¢ 0222 | 05 0,747 0105
46 2116 | 6.782 0217 ot 5.708 ; .0104
47 2200 | 6356 0213 o7 9,843 | .0L03
48 2304 | 6.928 -0208 o5 § 89D | 0102
49 | 2401 0 7 0204 | we o owsor | woose | .oloL
50 2500 7.071 02100 | 10000 | 10 | o



ANSWERS

I3, PAGE 10
6. Origin at A: A(0,0), B(41/2,0), C(4v/2,44/2), D(0,4v3).
at B: A{—4~/2,0), BO,0), C04V2), D(—4v2,4VD).
at O A(—4v/2, —44/D), BO,—4v/2), C(0,0), D{~4V/2, 0).
at D: A{©,—4v'D), BlaV2,—4V/2), C4+/2,0), N(O,0).

H.4, PAGE 12 . g\
L (2v/2, 45, (\/2_9, arc tan 2), (\/r’?, are tan _i) &g»

' V13 2 -
5 are tan _5)' v 4.
'

(v’ﬁ, arc tan ﬁ) (63, 135%), (2,0), (
3(a) (6 55); (b) (=33, —3V3).

L 4 % )
1.5, PAGES 14-15 \>\Q
L V3 3 VE—2v3 5.7 700 ,g\(b'

11.{a} sealene; (b) iroseeles; (c) equilateral. bQ

iL6, PAGE 184 »
2.(a) P{0,~1); () P(Z, ;); (c) P{14,3§§$ (4, %) (7, g)
5.(a) (7,00; (b) (41). 7. M%&ntemect n the point (:3é g)

o (1 2)i (BT ) v (38 = ()
O .

il.7.8, PAGE 23
2 Y32, @@r

4.(a) collili;é{@b) soncollinear; (c) collinear. 5. i'

8. AN
{3$ i.9, PAGE 25
@ m =1, a0 = 45% (b) m =1, a =45%

3
() m = ~1, ¢ = 135° () m = 3, o = arc tan 3;

8. ;—2\/—8-5. 10. 4 and

{e} m=gva=arct3ng; {f) m=0a=0;

{g) m is infinite, a = 90°.
3. Parallel, as slopes are equal.
5. The line segment connectitlg the mid-points of two sides of a triangle
cquals one-half of the remaining side.
6.(a) noncollinear, {b) noncollinear, (¢} noncollineir.

197
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.2, PAGE 28

1pcos(8—4)-3 3. pcos(0—23)—1 S.pcus(ﬁ——)_ﬁ

7. peoad=2 9. pcos (B —1) =0. 1. No. 13, Yea

1.3, PAGE 31
l(a)\f \/_—4=0;'(b)——\7--~j——2~0(c)x—“(\

@ y—1-0; (e)ﬁwéy—ﬁ—o 0§+ 3 &go
(2) 13z+153y 3-0; (h)_:c—r:z,r—2-_(l ~5’
5{a)pcns(ﬂ——)—4— (b) o cos (0 — 135 = 24 p 05 6 = 5;
(d)pcos(e_2)_zorpma~1 (e} \(8—30")—6

{f) peons (8 —60°) = 2; (g) pcos {Q t'm ]2 J—3
(b} p cos ]:3—'arc tan (i)] go

6.(a} p cos [8 — are tan (_4

H

=3; (d) p cos (3 — ‘_1) = 3+/2;
(f) 9= i Q’\
Q fit.4, PAGES 33-34

31

L{a) -5 20.94/2; (e} 0; () —1.6+/F; (e} 0.
3. x -%@] b2+4+y—12=0. 5 Result is Formula (8) of §1I.7.

ctors of the interior angles of a triangle intersect in a point.
50 9
s\@—ﬁ ~8), B ) CE3). 9. 3-2=0, 0(2, é)
«&3 L5, PAGES 36-37

00 1. 724y —19=0. 3. 2x+3y—4=0. 5 r+1 =0,

-4z 3y 4x

7.t ¥ s o9 22 ¥ _ 3
573 VIT VT V1T
Zr 51

I . Y
VI3 V13 13

13. 62 — 5y —20=0,22 43y — 16 =0, 10z +- 5 + 4 = 0.
14.(b) collinear. 15.(b) E ig the poing (4,%). 16. (5,12).

17.(a) Point of intersection (2,-132);

(b) Point of intersection (-a?-!-'—t%i%f. y‘-i%‘iy").
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., PAGE 38

5 A — _
1.-2 3. -3 5.-1 70 9 (z,_ A5 -, (4, Az O
I8, PAGE 41
1. 20 -y —2=0. 3. z4+y+1=0 5 24y —11=0
7. % — 3y — 0. O ';,)2- 11.(a} (e + byo).
N\
9, PAGE 43 A\

1) y = -4z +3; (b)y—;Hg,(c)y— 7:E+ 7,

(d)?f=—i4--;n—g. 3.(a) y = 3z + 6; B y=x—2;( y= ,g“%
\§

B B

(d) y=—z+38;(e) y=-2¢0-1
W©
.10, PAGES 45-46 \>
(4

1. are ton (- ) e}o‘\

3. ZA-—ar(,ta.n() LB =arctan 3, £ otan(z)

5. are tan (E) 7. arc fan (ﬁ) tan 3. 10. are tan (—5)
2

11, 2. - — —16 =0

1. 3 13. y = 7z — 15 14]6—}-@! 3

%@S} PAGES 47-48

1.(a) parallel; {(b) p icular; (c) neither; (d) neither; (e) perpendicular;
{f) perpendien

2-('3,1) oz + by Y+ byy) = 0, bz — ay — (b — ays) =
3.(a) AB: J—5-"OB(' z—Ty+86=0
' 3y-—30 {JDA :.:—7y-20—0
{b) §, (c) \—/—.; (d) 25, (e) 45% (B To +y 15 ="0.

&31}'—]—27—’0 3x+y-9=0
a) Point of intersection (; (2))
{b) Equations of perpendicular bisectors:
(2 — 2z + (g — ¥y + zd — B ;y""s i 2Ry
z — 2 T YP- —yd -0

(ge—zz + @G — ¥+ =2
R o ik L
(33‘$L)5+(J8'_y1)y+_1__ Ty =0

6. arc tan g-—g; hisector: 7z + 66y — 228 = 13
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IV.1, PAGES 53-54
Lia) (e — 1%+ (y— 22 =36; (b) (x+ 52 +2°=4;

(¢) =+ (y + 6)* = 3; (d) (m+§)2+ (z;ur;)2 =1;
{e) (z+hyP+{y—-&2=1; () (z—g)uyz = 16,
3.a) p = 2; (b) p = 12 cos (e - 73’) (c) p =8 cos 6; (d) p — 10 sin 6;
(€) p = —105in8; () p = ~8 oos 8; (gJP—ﬁL()S(Q-f-s) (\
4w C(§ ) r =2 on cirdle; (¢) 0(4,2) r = 4, not o cerIK{’)

(e) 0(5, 3) r = 5, not on cirele. 5.(a} {z — B)* - f;z 9
(6) @ =2+ (4 + 233 = 165 (0) (¢ — v/3* + {@\1) -4

7. (x - 3R+ = 16.
v.2, PAGES 55 \(:}

L{a) (2,-1), r = v/6; (b) (3 0) r= (mmgmmy circle);
(c} (__.1) r ,,4\/@ (d) (0 = 0 (point. circle);

(3)( 5 b) r——\/a2+a§s
2a) 2442 —dzx =0, (2,0 2;
(d) 22 +¢* — 82 — 8\/,‘3{~ (44\/_) r =8

3.(a) p=5cos [ Q}Q (3)] ; () -—4/_2—0 ens [8 — arc tan(—%)}

5. zg-i-y&—lx& by 4+ 64 = 0, 7. lnzide.
0.(a) 4z — 3y 6 =0, 4z + 3y — 80 = 0

é IV.3, PAGE 57
3.2+ % 42— ~15=0. 5. &ty ~dy — 1Ty + 45 ~ 0.
V.4, PAGE 59
@‘Uy =4, —3), real and distinet. 3. Both {4,0), real and coincident.
(0,6 +2+/—3), 0,6 ~ 24— 3), imaginary.

0{)6 (1,1), {2, —1), real and distinet.
7. Imaginary, (@:‘%3_\/_ 6, 25 \/._3_-'_)7-_6&2)
D.m——--—%‘ Moz —y+1=0,24+7-7=0.
. Review. PAGE 61
1, Collinear. 2, p cos (8 — g) = 8.
o y~4=24+3 or y-13 =z -6
T—y+7=0, f/—;__z—o,pcos(&—gf) 7\/_
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1
5. (4, ~39)- 7.(a) (15,13).
8. Hys — ya) T, — (2s — T 41+ Tatr — T yu!‘
‘ :l’:‘\/(?}a -yl + [z — z2)? t
0.{a} p=10cosf, 2 +y* -~ 10z = 0,
(b) p =Scos(a—-};)s P4y -4z —4dy =0

1L{a) 22 + o = 25; (b) (—4,3)}. 12. (z — 120 + (y — 9)* = 100,

. . . 18 1
13. 2z — 3y +13=0,{-243), 185 —y — 65 =0, (—,—5)- " <\
15, (¢ — 2 - (y - 6)° = 5. &
V1,2, PAGE 64 0&
122 — 2oy + 9 — 142 — 6y + 30 = 0. 3. 33 4 4y‘3+ﬁx—lﬂ5=

5. 2532 - 1642 + 200z — 106y — 401 = 0.
7. = dg. 0. 922 — 165 — 576 = 0. 11(b) A point, @ with 0

radius.}
\\

10 b %
3.(a) P~ 1} cose’ (b} » = i cos 8 (e) ’D"{]‘ 3(‘0%8’

V.3, PAGE 66

3(/

B
(@ p- 3-{—23053’()‘0 2&05{?’(6D ;L—i—wu&
ek
14+ cosd §
7.a) 3 +4x —4=10; (b) 32* — 2x + B4 = 0;
{e} 3:02—y~+24x+36—0, ( *+47;-—20x—10[]-—{].

\éf'AGEs 69-70
L2+ dax =0, 2. &N =0. 3 22 + day = O

5. ’F( 20))( 24): 4),3:— =
717(0-‘(.5 2y+3—0

0. F{0, —2), —4, -2), —2=0.
15.(a) (4}4\0 6. (2,\/6), @ VB 17 Q) @, 4V
@ V.5, PAGE 72
VI T, NELE
&= — H ( ) a

o.(a) _g + 2“’;—; =1;¢e= -5; Fi{0,4), Fs0, —4); dircctrices: 4y - 25 =1

18
dy 4+ 25 = D;L.R.—:-
= 33
{c) ~3£2 + ¥ =1;e= ?3 foeiz (0, £ 2V ‘3Y; dircetrices: ¥ = _“_g._;
L. R. =2 ‘
- ¥ —1: ¢ = /2; foci: (0 +3+/2); directrices: y = L i;
(e) _F + g y €= 3 . 1 \/2

L. R. = 6.
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V.6, PAGES 75—?6

o
L (@) 1{]0 “Fzs - -

2@ Gt =1 © 5+ s
6.(a) (1,i§); (b) (:I:\/2,:I:§\/§).

Vi1, PAGES 80-81
L {-3,0), (-4, 5),( —83), (~5,6), (x—4,py-2).

3.(a) 3¢ + 4y — 8 =0; (b) ¥ = 102" — 4; (c) az’ + by’ (c—a)-l')
4.(a) Circle 22 + y* = 4; (b) Circle x*z + y” =9;

(¢} Parabola 3" = 42'; (f) ]i;lhpse g + ¥ i =1, )
5.(a) Translate fo (1,-2), y’* = B2; (b) Translate to (‘ 9 = —dg";

(¢) Translate to (3,5), «'* = —10y"; ) {é\
(d) Translate to (-— %;;c z? = -‘f?f’ &
v N

6.(a) Translate to (-1 0), Q + a =1, &

2
(c) Translate to (1, —1), T + -—T _ (b'

T~ 1= - ) LR = 4; afYix 2 - 3 = 0,
T2 (y4 19 . @3 _ —1)-
g. e+ i =L 1. I = loel: (=1,—1), (5,—1);

directrices: 3z — 31 = g@ 18 =10,
. — & T
. -2 ¥ oL R 4. directrices: 4o = 17, 40 = —1:

T A s L ’
:'entor (2,0). (Q

— 2
1L v "M{\l R _.._’,fn(,l 0,2), (0,8); directrix: 3y + 1 = 0.
¥—1 + ‘8);
1. E_I_Q‘ P LR = teckt (31 - /3, (2,1 4 v

dire%‘ fes: = 1 — E-\/_ y=14 3-\/)‘3'
IS\Q Ef = —dafz — ;T R. = da; foei: (h — ak);

Q\hre(tllx =4+ a
0@ 2 m g —py 20 . a
e

g = L LB =" direetrices: ¢ = k &
a

a2
0 foei: (h - ~/gf — — BLE), (h+ e T — B k).
i V1.2.3.4, PAGE 86
3. Center (0,0), proper conie,
5. Center {14,5), 7 — 'y + By 2 =0, proper.
6. Center (14,5), conie degenerates into two | Imaginary lines,
ay — (2 + z):r =05y + (2 -+ D' < 0.
7. Center (16,18), dx'? — 72 ¥+ 8y + 11 =0, pr oper.
9, (b)x+y—1~—0 Try+2=10
(c) =4 2y—3-—0 xTZ,r-—SHO

11. Center (2 - —) ellipre 22 |- 2y = 3——;

L]

g =h—
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13,
15,

Center (3,1}, ellipse 322 + 4y = 12,
Center (5,—2), imaginary circle 2 4+ 4 = 10,
V¥1.5, PAGE %0
2.y =3,y = —3z. 3. y=gsy= —z-

4. No real asymptotes. 6. 2 —y =0, bz -y = 0.

10.

4, 17z 4+ 4y — 68 = 0, ellipse.
7. iz + 1215 — 864 = 0, ellipse.

1L 472 = -

Zfa) L 2% —9=0, M2 —y—-3=0, (&) r ‘\ 15=10

5. 63, 8 (51} 840y =30

1 _ 1.
Coenter (2,—5), hyperbola, x - y+/2 - 2 + 2\/‘2 =1
| .,
and z+yv2-2- 420
V1.6, PAGE 93

1
\71_§x”, parabela. 13 3% = 2+ /22", pam.b
Review. PAGE 94

Vertices of triangle (3,3), (7,11), (—3.6) b

.

vIl.1, PAGE 99

5. 92" — 4y — 38 = 0, hyperh
9. Ay — 62 - T =0, h

2

«‘35

1. 3z + 4y = 25, dx — 3y = 25. %g’iz—sy=—1, 4 + By = 0.
5. x4+2y—7=0,z—2y+5= 6. dx |- 3y — 220,
7. %2 —y =10, 2:;—1;_2{1 + 4y = 4410,
15, 4z — 3y = =xal). 16, 3—2-7=0.
Q&NQ PAGES 101102
2, hr + 8y — 21 = ay+2 =0
3, z—9y+3 :c—‘—y+27 - ),
5. z+y—5 T—y+1=0. 7.3z —-5y+23=0, 5x+3y+ 27 =0.
9. xx —l—_?o =0 oy —xay =0,

ﬂ; E '2‘ =1, atyhz + Pey - (0f + Wy =00
i ¥

@ ent: 16z + 13y = 100, Normal: Yz — 80y = 108,

Vvill.1.2, PAGE 104

1. Cirele » = 3, center at pole. 3. Polar axis.

5. Biraight line through (2, E) 7. Btraight line through (l, --)

" 1 1
9. Circle r = o center (2- ﬁ)'
3 15 12
11.{a) p = 1{(‘059,()9 4_‘_33039;()9 3(0,‘9
13, p = .Lﬂ. (parabols). 15. p = ——5— {hy p(‘.rbola,).
1 —co 1+ cos @

4
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YHL5.6.7, PAGE 110
16, p*sin 20 =g 7. p = —4sing 18 p = afl — cos 8).
10.1) (@430 = 4@ — ) (5) 4@ + 5 — 40 + 0 2 o - 0.

(M 22+ —y=0. (21) (a2 + 422 = 9(* — 37},
.’n." xr -

ae) y =22

—x

21. (a, ;r) (a, - g) 23, (2, =+ are tané)f (2, =+ are tan — —;)

X.1,2, PAGE 128
QY =2 QP —-x+2+1=0 (3) 22—y =0,
(4) 22y —y—3=10. (5) 9% — Bay + 4 + 14z — 38y + b4§%
(6) 2 ~3wfy + 8af — ¥ —dw ~dy =0 or (z— ) - —v)
9. x4+ 3y — Bazy = (. p

X4, PAGE 132 <(8
s (5)+(5) -1 @ @-pr- 43:\‘\0

‘ Xi.2, PAGES 15

1.6 310, 5. d=/22 Ly + 22 ‘&a) {2,2,0); (b) /13 and 7.
9.(a) Collinear; (b) (‘ollmcar, (e} near,
10. (2,46) 12. /41, \/‘?,“3%6

xag GES 156 157

1 3 ca
" VB8 A58 \/ag(\ V95 \/29 \/29

5. (1,0,0; 0, LEDD, 1). 7. No. o. (3 -1 -)

11.{a} Paralle, zy-plane, 1 to z-axis;

(b) Paga zz-plane, | to y-axis;

{c) P el to r-axis, | to yz-plane.
XII4 5, PAGE 159

\éQ—h-c cos —3 3. Arc cos, 5. % 7(a) No; (b) No.

0 X6, PAGE 162
1, 456 i i

3. Zero (gives points coplanar),
5 No. 6.a+6=0. % In the plane 4z — 3y + 10: — 17 = Q.
XN.1.2, PAGES 166-167

Yzl 1 & 1 vy o2y
1.A=y2221,32$222], = [Tz Ya Zu| .
Vs 23 1 £z 23 1 2 ¥z 23

3.(a) Noncoplanar; (b) Coplanar.

7.(a) t,.rz—plane zz-plane, zy-plane;
(®) 1] to ye-plane, | to wz-plane, |l to ay-plane;
{c) All 1 to zy—plsme
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1.
4.
7.

-oo.
11.

11.

15.

@0

15,

L22 i 2 3 1
Y. SRV R Ve

1 . 1
Ve TVE VBTV ¢
| SRR

. &+ 3y + bz — 19,

Xilt.3, PAGE 169
T+y+v2—-10=0 2. z—~/3y—2+8=0. 3. xr—3=0
t—3y+10=0 5. z—+By-z+6=0
|| to z-axis, 1 to zy-plane, 3z + 2y — 6 = 0.
The yz-plane, z = 0.
 — 4y + 8z — 9 = 0, meeting ench of the axes io & point that is not
the origin.

XNl.4.5, PAGE 172

1 2 2 1

2 1

>

41

p=

" NERF e —VEtTETe —Va e NG ¢
N

{for positive values of both g and ).
/] b ¢ d

IVETF 1S Ve ihie IVEI R RRY —Varbie

{for positive values of @ and negative val Y,
d = —2+/6 (on same zside). 9. d = _—4% same side}.

150 60 .
d = — -2 ide). 13.’35: ——— (on same side).
W {on same side) vis { side)
a0 N
14
v {\

K@o.v, PAGE 174
0" 3.4z -2 -8=0. 5 6z—y+6=0,

LIy + VE -@ +4/2=0. 9. x+2y+5z2-30=0.
. 3z 4 42 — 0. 12.“—25+_%+g=1,3x~2y+z—ﬁ=0.

_.Z=1, 4r+ 6y —Hz—4=10.
5
3T Y
'p/q+r/s+q/p

= ]_,
¢ -+ pasy + pryz = par.
FLE L2 - 23z — 40 = 0.
5+—2+§9 1, 8z ~ 20y + 232
53
Xill.8.9, PAGES 177-178

1. z-axis: ¢ = 0, z = 0; y-axis: 2 = 0,z = 0; zaxis: £ = 0,4 =0
3. 13,16,7. 4 13, —156. 5 7, 21, -5

-8 1

. B
¢. Dircction cosines of each line are o1’ 101 Tl

&
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XIl.10, PAGE 180

-2 -1 3
L, -3, -1, 3 (direction mmmbers); ——, =, _°_ {direction cosines).
A )’\/1_4 V14 /14 )
35:—1_-3;-—2__2—3_ g *—=8 _y—-2 =z
8 -3 T 3 R T
g _y—1 z+42 y s
7.?3—_——5—-__ T 9. 2r + 29+ 2 — 5 = 0.
10. £ = y_'__l_ _* — 2.
3 4 3 . ’<\
PAGE 181 N
Review Exercises &Q
Chapters XII and XIII. 0
RENG TS Q}
. 2
3. 3x-3y—2z+18=o,f_6+%+g__.1, 33—%_ 15 _o.
54 N\

5. 15 89. V. 2—y+32—16=0 o (2@
10.(a) 3y +2—18=0; (b) 26 — y ~ 0;
XIV.1, PA

L@—1P+ 4t (et 37 =
3.2+ 22— 59 = Q. 5. 2 +& - 102 =0,

VO T A S 4y — 1 14 = 0. 9. Center (0,0,0), radius = 5.
11. Center (4,2,0), radius = &X¥13. Given point is inside the sphere.
15. Each sphere is out-sid&@ other,

«©

Tz - 18 = 0.

84
+¥ -2 -8y +6:-10=0,




INDEX

(Numbers refer fo pages)

Ahscisza, 6
Angle between two lines, 43, 157
of inelination, 24
vectorial, §
Arbitrary constant, 137
Aren of a triangle, 12
Asymptotes, 87
horizontal, 115
vertical, 115
Average, 139

Center of mass, 18
of symmetry, 73
Central conie, 70
Centroid of triangle, 12
Circle, 50
Cissoid, 104
Collinear, 15
Conie, 62
directrix, 62
ceeentrieity, 62
focus, 62
polar cquation, 103
section, 62

Conjugnte axis, 71

Co-ordinate systems, 5 {Q

Co-ordingtes, changes @
polar, 8 K
rectanguiar, 8 &

Cosines, directjo

Cylinder, 193 b

Drogenes, nic, 84

Diree fy\.%ineg, 155

DirgdtNx, 42
@cc hetween two points, 12,
153
0 to a line, 32
to a plane, 170
Hecentricity, 42
Ellipse, 71
Ellipseid, 183

Empirical equations, 134
Exponential curves, 119

Foecus of conic, 62
Four-leaf rose, 107

Horizontal asymptotes, 115
Hyperbola, 71
fIyperboloid, 187
tHypoeyeloid, 131

Inclination, angle of, 24
Intercept form of a line, 42

Limagon, 105 s%’
Line, intereept for @

normal form, 3
slope-point, l@{]
Locus, 26
Ingarithnz\@@?ve, 119
Meﬂ@)
~point of segment, 17

Latus rectum, 68
Lemniscate, 109

Midt
B * - —
$Or axis, 71
& oments, 141

Normal equation of line, 29
equetion of plane, 167

Ordinate, 6
Origin, 6

Parabola, 67

principal axis, 67

vertex, 68
Parallel lines, 48, 15%
Parameter, 113
Parametric equations, 123
Periodie curves, 11%
Perpendicular lines, 46, 159
Polar axis, 7

co-ordinates, 8
Pole, 7
Power function, 145
Principal axis of parabola, 67

of central conie, 71

Quadrants, 6
(Quadrie, 183
proper, 191

207
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INDEX

Radius vector, 8§
Rectangular co-ordinates, 6
Rotation of axes, 91

Scatter diagram, 135

SBemicubical parabola, 127

Slope, 24

Slope-point form of line, 40

Sphere, 183

3piral of Archimedes, 108
logarithmie, 100

Symmetrical form, 179
Bymmetry, 111
central, 113

Tangent of conte, 96
Tetrahedron, 163
Translation of axes, 79

Vec'tor, radiug, 8

Yectorial angle, § % Q
Vertex of parabola, 68

Vertical asymptotes. 115 Q’
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